Advertisement

Journal of Plant Growth Regulation

, Volume 24, Issue 2, pp 127–141 | Cite as

Overexpression of Maize IAGLU in Arabidopsis thaliana Alters Plant Growth and Sensitivity to IAA but not IBA and 2,4-D

  • Jutta Ludwig-Müller
  • Alexander Walz
  • Janet P. Slovin
  • Ephraim Epstein
  • Jerry D. Cohen
  • Weiqin Dong
  • Christopher D. Town
Article

Abstract

Overexpression of the IAGLU gene from maize (ZmIAAGLU) in Arabidopsis thaliana, under the control of the CaMV 35S promoter, inhibited root but not hypocotyl growth of seedlings in four different transgenic lines. Although hypocotyl growth of seedlings and inflorescence growth of mature plants was not affected, the leaves of mature plants were smaller and more curled as compared to wild-type and empty vector transformed plants. The rosette diameter in transgenic lines with higher ZmIAGLU expression was also smaller compared to the wild type. Free indole-3-acetic acid (IAA) levels in the transgenic plants were comparable to the wild type, even though a decrease in free IAA levels might be expected from overexpression of an IAA-conjugate–forming enzyme. IAA-glucose levels, however, were increased in transgenic lines compared to the wild type, indicating that the ZmIAGLU gene product is active in these plants. In addition, three different 35SZmIAGLU lines showed less inhibition of root growth when cultivated on increasing concentrations of IAA but not indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D). Feeding IAA to transgenic lines resulted in increased IAA-glucose synthesis, whereas the levels of IAA-aspartate and IAA-glutamine formed were reduced compared to the wild type. Our results show that IAA homeostasis can be altered by heterologous overexpression of a conjugate-forming gene from maize.

Keywords

Arabidopsis Auxin homeostasis IAA conjugates IAA-glucose synthase Zea mays 

Notes

Acknowledgments

This work was supported by a grant from the Deutsche Forschungsgemeinschaft to J. Ludwig-Müller (Lu 500/2-3) and U.S. Department of Energy grant DE-FG02-00ER15079 and U.S. National Science Foundation grant IBN 0111530 to J. Cohen. The ZmIAAGLU cDNA was obtained from Prof. Dr. Robert S. Bandurski. The maize IAA-glucose synthase antibody was a gift from Dr. Mariusz Kowalczyk. Vectors pCGN1761ENX and pCIB200 were provided by Dr. Eric Ward. We thank Mrs. Kerstin Pieper for excellent technical assistance.

References

  1. Baldi BG, Maher BR, Cohen JD. 1989. Hydrolysis of indole-3-acetic acid esters exposed to mild alkaline conditions. Plant Physiol 91:9–12CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bandurski RS, Cohen JD, Slovin JP, Reinecke D. 1995. Auxin biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones: physiology, biochemistry, and molecular biology. Kluwer Academic Publishers, Dordrecht, The Netherlands, 39–65CrossRefGoogle Scholar
  3. Barratt, NM, Dong, W, Gage, DA, Magnus, V, Town, CD 1999Metabolism of exogenous auxin by Arabidopsis thaliana: identification of the conjugate N-(indol-3-ylacetyl)-glutamine and initiation of a mutant screenPhysiol Plant105207217CrossRefGoogle Scholar
  4. Bartel, B, Fink, GR 1995ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugatesScience26817451748CrossRefPubMedGoogle Scholar
  5. Bialek K, Cohen JD. 1986. Isolation and partial characterization of the major amide-linked conjugate of indole-3-acetic acid from Phaseolus vulgaris L. Plant Physiol 80:99–104CrossRefPubMedPubMedCentralGoogle Scholar
  6. Campanella, JJ, Ludwig-Mueller, J, Town, CD 1996Isolation and characterization of mutants of Arabidopsis thaliana with increased resistance to growth inhibition by IAA-amino acid conjugatesPlant Physiol112735746CrossRefPubMedPubMedCentralGoogle Scholar
  7. Campanella, JJ, Ludwig-Müller, J, Bakllamaja, V, Sharma, V, Cartier, A 2003ILR1 and sILR1 IAA amidohydrolase homologs differ in expression pattern and substrate specificityPlant Growth Regul41215223CrossRefGoogle Scholar
  8. Chen K-H, Miller AN, Patterson GW, Cohen JD. 1988. A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIM-MS analysis. Plant Physiol 86:822–825CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chou, J-C, Mulbry, WW, Cohen, JD 1998The gene for indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans: molecular cloning, nucleotide sequence, and expression in Escherichia coliMol Gen Genet259172178CrossRefPubMedGoogle Scholar
  10. Cohen, JD 1984Convenient apparatus for the generation of small amounts of diazomethaneJ. Chromatogr303193196CrossRefGoogle Scholar
  11. Cohen, JD, Bandurski, RS 1982Chemistry and physiology of the bound auxinsAnnu Rev Plant Physiol33403430CrossRefGoogle Scholar
  12. Cohen JD, Baldi BG, Slovin JP. 1986. 13C6-?Benzene ring?-indole-3-acetic acid: a new internal standard for quantitative mass spectral analysis of IAA in plants. Plant Physiol 80:14–19CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cohen, JD, Slovin, JP, Hendrickson, AM 2003Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesisTrends Plant Sci8197199CrossRefPubMedGoogle Scholar
  14. Davies, RT, Goetz, DH, Lasswell, J, Anderson, MN, Bartel, B 1999IAR3 encodes an auxin conjugate hydrolase from ArabidopsisPlant Cell11365376CrossRefPubMedPubMedCentralGoogle Scholar
  15. Domagalski, W, Schulze, A, Bandurski, RS 1987Isolation and characterization of esters of indole-3-acetic acid from the liquid endosperm of the horse chestnut (Aesculus species)Plant Physiol.8411071113CrossRefPubMedPubMedCentralGoogle Scholar
  16. Glass NL, Kosuge T. 1986. Cloning of the gene for indoleacetic acid-lysine synthetase from Pseudomonas syringae ssp. savastanoi. J Bacteriol 166:598–603PubMedGoogle Scholar
  17. Graham R, Thornburg R. 1997. DNA sequence of UDP-glucose:indole-3-acetate-beta-D-glucosyltransferase from Arabidopsis thaliana (accession no. U81293) (PGR97-044). Plant Physiol 113:1004Google Scholar
  18. Gray, WM, Ostin, A, Sandberg, G, Romano, CP, Estelle, M 1998High temperature promotes auxin-mediated hypocotyl elongation in ArabidopsisProc Natl Acad Sci USA.9571977202CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ilić, N, Normanly, J, Cohen, JD 1996Quantification of free plus conjugated indoleacetic acid in Arabidopsis requires correction for nonenzymatic conversion of indolic nitrilesPlant Physiol111781788CrossRefGoogle Scholar
  20. Iyer M, Slovin JP, Epstein E, Cohen JD. 1999. An unexpected change in free IAA levels and alteration of fruit ripening in tomatoes transformed with the iaglu gene. Plant Biol 1999, abstract no. 704Google Scholar
  21. Iyer M, Slovin JP, Epstein E, Cohen JD. 2005. Transgenic tomato plants with a modified ability to synthesize indole-3-acetyl-β-1-0-D-glucose. J. plant Growth Regul 24 (this issue)Google Scholar
  22. Jackson, RG, Lim, EK, Li, Y, Kowalczyk, M, Sandberg, G,  et al. 2001Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferaseJ Biol Chem27643504356CrossRefPubMedGoogle Scholar
  23. Jackson, RG, Kowalczyk, M, Li, Y, Higgins, G, Ross, J,  et al. 2002Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic linesPlant J32573583CrossRefPubMedGoogle Scholar
  24. Jakubowska A, Kowalczyk S, Leznicki AJ. 1993. Enzymatic hydrolysis of 4-O and 6-O-indolo-3-ylacetyl-beta-D-glucose in plant tissues. J Plant Physiol 142:61–66CrossRefGoogle Scholar
  25. Keller, CP, Stahlberg, R, Barkawi, LS, Cohen, JD 2004Long-term inhibition by auxin of leaf blade expansion in bean and ArabidopsisPlant Physiol.13412171226CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kesy, JM, Bandurski, RS 1990Partial purification and characterization of indol-3-yl-acetylglucose-myo-inositol indol-3-yl-acetyltransferase (indoleacetic acid-inositol synthase)Plant Physiol.9415981604CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kneller, DG, Cohen, FE, Langridge, R 1990Improvements in protein secondary structure prediction by an enhanced neural networkJ Mol Biol214171182CrossRefPubMedGoogle Scholar
  28. Kyte, J, Doolittle, RF 1982A simple method for displaying the hydropathic character of a proteinJ Mol Biol157105142CrossRefPubMedGoogle Scholar
  29. Laemmli, UK 1970Cleavage of structural proteins during the assembly of the head of bacteriophage T4Nature227680685CrossRefPubMedGoogle Scholar
  30. LeClere, S, Tellez, R, Rampey, RA, Matsuda, SPT, Bartel, B 2002Characterization of a family of IAA-amino acid conjugate hydrolases from ArabidopsisJ Biol Chem2772044620452CrossRefPubMedGoogle Scholar
  31. Leznicki, AJ, Bandurski, RS 1988Enzymic synthesis of indole-3-acetyl-1-0-β-D-glucose. II. Metabolic characteristics of the enzymePlant Physiol8814811485CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ljung, K, Bhalerao, RP, Sandberg, G 2001Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growthPlant J28465474CrossRefPubMedGoogle Scholar
  33. Löw, R, Rausch, T 1994Sensitive nonradioactive Northern blots using alkaline transfer of total RNA and PCR-amplified biotinylated probesBioTechniques1710261030PubMedGoogle Scholar
  34. Ludwig-Müller J, Hilgenberg W. 1992. Tryptophan oxidizing enzyme and basic peroxidase isoenzymes in Arabidopsis thaliana (L.) Heynh.: are they identical? Plant Cell Physiol 33:1115–1125Google Scholar
  35. Ludwig-Müller, J, Sass, S, Sutter, EG, Wodner, M, Epstein, E 1993Indole-3-butyric acid in Arabidopsis thaliana. I. Identification and quantificationPlant Growth Regul13179187CrossRefGoogle Scholar
  36. Ludwig-Müller J, Schubert B, Pieper K. 1995. Regulation of IBA synthetase by drought stress and abscisic acid. J Exp Bot 46:423–432CrossRefGoogle Scholar
  37. Ludwig-Müller, J, Epstein, E, Hilgenberg, W 1996Auxin-conjugate hydrolysis in Chinese cabbage: characterization of an amidohydrolase and its role during the clubroot diseasePhysiol Plant97627634CrossRefGoogle Scholar
  38. Michalczuk, L, Bandurski, RS 1982Enzymic synthesis of 1-O-indol-3-ylacetyl-β-D-glucose and indol-3-ylacetyl-myo-inositolBiochem J207273281CrossRefPubMedPubMedCentralGoogle Scholar
  39. Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473-497CrossRefGoogle Scholar
  40. Oetiker, JH, Aeschbacher, G 1997Temperature-sensitive plant cells with shunted indole-3-acetic acid conjugationPlant Physiol11413851395CrossRefPubMedPubMedCentralGoogle Scholar
  41. Östin, A, Kowalczyk, M, Bhalerao, RP, Sandberg, G 1998Metabolism of indole-3-acetic acid in ArabidopsisPlant Physiol118285296CrossRefPubMedPubMedCentralGoogle Scholar
  42. Peterson GL. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356PubMedGoogle Scholar
  43. Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B. 2004. A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination 135:1–11Google Scholar
  44. Roberto, FF, Klee, H, White, F, Nordeen, R, Kosuge, T 1990Expression and fine structure of the gene encoding indole-3-acetyl-L-lysine synthetase from Pseudomonas savastanoiProc Natl Acad Sci USA8757975801CrossRefPubMedPubMedCentralGoogle Scholar
  45. Romano, CP, Hein, MB, Klee, HJ 1991Inactivation of auxin in tobacco transformed with the indoleacetic acid–lysine synthetase gene of Pseudomonas savastanoiGenes Dev5438446CrossRefPubMedGoogle Scholar
  46. Sambrook J, Russell D 2001. Molecular cloning: a laboratory manual (3rd edition). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  47. Simmons, C, Migliaccio, F, Masson, P, Caspar, T, Soll, D 1995A novel root gravitropism mutant of Arabidopsis thaliana exhibiting altered auxin physiologyPhysiol Plant93790798CrossRefPubMedGoogle Scholar
  48. Slovin JP, Bandurski RS, Cohen JD. 1999. Auxin. In: Hoykaas PJJ, Hall MA, Libbenga KR, eds,Biochemistry and molecular biology of plant hormones. Elsevier, Amsterdam, 115–140CrossRefGoogle Scholar
  49. Spena A, Prinsen E, Fladung M, Schulze SC, van Onckelen H. 1991. The indoleacetic acid-lysine synthetase gene of Pseudomonas syringae subsp. savastanoi induces developmental alterations in transgenic tobacco and potato plants. Mol Gen Genet 227:205–212PubMedGoogle Scholar
  50. Staswick, PE, Tiryaki, I, Rowe, ML 2002Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic and indole-3-acetic acids in an assay for adenylationPlant Cell1414051415CrossRefPubMedPubMedCentralGoogle Scholar
  51. Staswick, PE, Serban, B, Rowe, M, Tiryaki, I, Maldonado, MT,  et al. 2005Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acidPlant Cell17616627CrossRefPubMedPubMedCentralGoogle Scholar
  52. Szerszen, JD, Szczyglowski, K, Bandurski, RS 1994iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acidScience26516991701CrossRefPubMedGoogle Scholar
  53. Sztein, E, Cohen, JD, de Garcia la Fuente, I, Cooke, TJ 1999Auxin metabolism in mosses and liverwortsAm J Bot8615441555CrossRefGoogle Scholar
  54. Tam, YY, Normanly, J 2002Overexpression of a bacterial indole-3-acetyl-L-aspartic acid hydrolase in Arabidopsis thalianaPhysiol Plant115513522CrossRefPubMedGoogle Scholar
  55. Tam, YY, Epstein, E, Normanly, J 2000Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucosePlant Physiol123589595CrossRefPubMedPubMedCentralGoogle Scholar
  56. Valvekens D, van Montagu M, van Lijsebettens M. 1988. Agrobacterium tumefaciens–mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540CrossRefPubMedPubMedCentralGoogle Scholar
  57. Walz, A, Park, S, Slovin, JP, Ludwig-Müller, J, Momonoki, Y,  et al. 2002A gene encoding a protein modified by the phytohormone indoleacetic acidProc Natl Acad Sci USA9917181723CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yamagishi E, Gong Z, Yamazaki M, Saito K. 1998. Molecular cloning of a cDNA encoding a novel UDP-glucose glucosyltransferase homologue from Arabidopsis thaliana (accession no. AB016819) (PGR98-187). Plant Physiol 118:1102Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Jutta Ludwig-Müller
    • 1
  • Alexander Walz
    • 1
  • Janet P. Slovin
    • 2
  • Ephraim Epstein
    • 2
  • Jerry D. Cohen
    • 3
  • Weiqin Dong
    • 4
  • Christopher D. Town
    • 4
    • 5
  1. 1.Institut für BotanikTechnische Universität DresdenGermany
  2. 2.Fruit Laboratory, U.S. Department of AgricultureAgricultural Research ServiceBeltsvilleUSA
  3. 3.Department of Horticultural Science and Center for Microbial and Plant GenomicsUniversity of MinnesotaSaint PaulUSA
  4. 4.Biology DepartmentCase Western Reserve UniversityClevelandUSA
  5. 5.The Institute for Genomic ResearchRockvilleUSA

Personalised recommendations