Journal of Plant Growth Regulation

, Volume 22, Issue 4, pp 289–297 | Cite as

Brassinosteroid-Mediated Stress Responses

  • Priti KrishnaEmail author


Brassinosteroids (BRs) are a group of naturally occurring plant steroidal compounds with wide-ranging biological activity that offer the unique possibility of increasing crop yields through both changing plant metabolism and protecting plants from environmental stresses. In recent years, genetic and biochemical studies have established an essential role for BRs in plant development, and on this basis BRs have been given the stature of a phytohormone. A remarkable feature of BRs is their potential to increase resistance in plants to a wide spectrum of stresses, such as low and high temperatures, drought, high salt, and pathogen attack. Despite this, only a few studies aimed at understanding the mechanism by which BRs promote stress resistance have been undertaken. Studies of the BR signaling pathway and BR gene-regulating properties indicate that there is cross-talk between BRs and other hormones, including those with established roles in plant defense responses such as abscisic acid, jasmonic acid, and ethylene. Recent studies aimed at understanding how BRs modulate stress responses suggest that complex molecular changes underlie BR-induced stress tolerance in plants. Analyses of these changes should generate exciting results in the future and clarify whether the ability of BRs to increase plant resistance to a range of stresses lies in the complex interactions of BRs with other hormones. Future studies should also elucidate if BRI1, an essential component of the BR receptor, directly participates in stress response signaling through interactions with ligands and proteins involved in plant defense responses.


Brassinosteroid Hormone Environmental stress Stress responses Thermotolerance Disease resistance 



I thank Professor M. Perry for careful reading of the manuscript, and S. Kagale and Dr. Z. Zhang for assistance in preparation of the manuscript. Support from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.


  1. 1.
    Abraham, E, Rigo, G, Szekely, G, Nagy, R, Koncz, C, Szabados, L 2003Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis.Plant Mol Biol51363372CrossRefPubMedGoogle Scholar
  2. 2.
    Anuradha, S, Rao, SSR 2001Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.).Plant Growth Regul33151153CrossRefGoogle Scholar
  3. 3.
    Bouquin, T, Meier, C, Foster, R, Nielsen, ME, Mundy, J 2001Control of specific gene expression by gibberellin and brassinosteroid.Plant Physiol127450458CrossRefPubMedGoogle Scholar
  4. 4.
    Chrispeels, MJ, Agre, P 1994Aquaporins: water channel proteins of plant and animal cells.Trends Biochem Sci19421425PubMedGoogle Scholar
  5. 5.
    Clouse, SD 2002Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression.Mol Cell10973982PubMedGoogle Scholar
  6. 6.
    Clouse, SD, Sasse, JM 1998Brassinosteroids: essential regulators of plant growth and development.Annu Rev Plant Physiol Plant Mol Biol49427451Google Scholar
  7. 7.
    Cutler, GC 1991Brassinosteroids through the looking glass: an appraisal.Cutler, HGYokota, TAdam, G eds. Brassinosteroids: Chemistry, Bioactivity and Applications. ACS Symp Ser 474. American Chemical SocietyWashington, DC334345Google Scholar
  8. 8.
    Dangl, JL, Jones, JDG 2001Plant pathogens and integrated defence responses to infection.Nature411826833PubMedGoogle Scholar
  9. 9.
    Dhaubhadel, S, Browning, KS, Gallie, DR, Krishna, P 2002Brassinosteroid functions to protect the translational machinery and heat shock protein synthesis following thermal stress.Plant J29681691CrossRefPubMedGoogle Scholar
  10. 10.
    Dhaubhadel, S, Chaudhary, S, Dobinson, KF, Krishna, P 1999Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings.Plant Mol Biol40333342CrossRefPubMedGoogle Scholar
  11. 11.
    Friedrichsen, DM, Nemhauser, J, Muramitsu, T, Maloof, JN, Alonso, J, Ecker, JR, Furuya, M, Chory, J 2002Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth.Genetics16214451456PubMedGoogle Scholar
  12. 12.
    Goda, H, Shimada, Y, Asami, T, Fujioka, S, Yoshida, S 2002Microarray analysis of brassinosteroid-regulated genes in Arabidopsis.Plant Physiol13013191334CrossRefPubMedGoogle Scholar
  13. 13.
    Gomez–Gomez, L, Boller, T 2000FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis.Mol Cell510031011PubMedGoogle Scholar
  14. 14.
    He, RY, Wang, GJ, Wang, XS 1991Effects of brassinolide on growth and chilling resistance of maize seedlings.Cutler, HGYokota, TAdam, G eds. Brassinosteroids: Chemistry, Bioactivity and Applications.ACS Symp Ser 474.American Chemical SocietyWashington, DC220230Google Scholar
  15. 15.
    Ikekawa, N, Zhao, YJ 1991Application of 24-epibrassinolide in agriculture.Cutler, HGYokota, TAdam, G eds. Brassinosteroids: Chemistry, Bioactivity and Applications. ACS Symp Ser 474.American Chemical SocietyWashington, DC280291Google Scholar
  16. 16.
    Kamuro, Y, Takatsuto, S 1991Capability for and problems of practical uses of brassinosteroids.Cutler, HGYokota, TAdam, G eds. Brassinosteroids: Chemistry, Bioactivity and Applications. ACS Symp Ser 474.American Chemical SocietyWashington, DC292297Google Scholar
  17. 17.
    Kamuro, Y, Takatsuto, S 1999Practical applications of brassinosteroids in agricultural fields.Sakurai, AYokota, TClouse, SD eds. Brassinosteroids Steroidal Plant HormonesSpringer-VerlagTokyo223241Google Scholar
  18. 18.
    Katsumi, M 1991Physiological modes of brassinolide action in cucumber hypocotyl growth.Cutler, HGYokota, TAdam, G eds. Brassinosteroids: Chemistry, Bioactivity and Applications. ACS Symp Ser 474.American Chemical SocietyWashington, DC246254Google Scholar
  19. 19.
    Khripach, V, Zhabinskii, V, de Groot, A 1999Brassinosteroids A New Class of Plant Hormones.Academic PressSan Diego, CA263Google Scholar
  20. 20.
    Khripach, V, Zhabinskii, V, de Groot, A 2000Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century.Ann Bot86441447CrossRefGoogle Scholar
  21. 21.
    Kitajima, S, Sato, F 1999Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein function.J Biochem12518PubMedGoogle Scholar
  22. 22.
    Koncz, C 1998Cross-talk between brassinosteroids and pathogenic signaling?Trends Plant Sci312CrossRefGoogle Scholar
  23. 23.
    Kulaeva, ON, Burkhanova, EA, Fedina, AB, Khokhlova, VA, Bokebayeva, GA, Vorbrodt, HM, Adam, G 1991Effect of brassinosteroids on protein synthesis and plant-cell ultrastructure under stress conditions.Cutler, HGYokota, TAdam, G eds. Brassinosteroids: Chemistry, Bioactivity and Applications. ACS Symp Ser 474.American Chemical SocietyWashington, DC141155Google Scholar
  24. 24.
    Li, J, Chory, J 1997A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction.Cell90929938PubMedGoogle Scholar
  25. 25.
    Li, J, Chory, J 1999Brassinosteroid actions in plants.J Exp Bot332275282CrossRefGoogle Scholar
  26. 26.
    Li, J, Nagpal, P, Vitart, V, McMorris, TC, Chory, J 1996A role for brassinosteroids in light dependent development of Arabidopsis.Science272398401PubMedGoogle Scholar
  27. 27.
    Li, J, Wen, J, Lease, KA, Doke, JT, Tax, FE, Walker, JC 2002BAK1, an Arabidopsis LRR receptor-like protein kinase interacts with BRI1 and modulates brassinosteroid signaling.Cell110213222PubMedGoogle Scholar
  28. 28.
    Liechti, R, Farmer, EE 2002The jasmonate pathway.Science29616491650CrossRefPubMedGoogle Scholar
  29. 29.
    Lin, F, Xu, SL, Ni, WM, Chu, ZQ, Xu, ZH, Xue, HW 2003Identification of ABA-responsive genes in rice shoots via cDNA macroarray.Cell Res135968PubMedGoogle Scholar
  30. 30.
    Mandava, NB 1988Plant growth-promoting brassinosteroids.Ann Rev Plant Physiol Plant Mol Biol392352CrossRefGoogle Scholar
  31. 31.
    Montoya, T, Nomura, T, Farrar, K, Kaneta, T, Yokota, T, Bishop, GJ 2002Cloning the tomato Curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase tBRI1/SR160 in plant steroid hormone and peptide hormone signaling.Plant Cell1431633176CrossRefPubMedGoogle Scholar
  32. 32.
    Morillon, R, Catterou, M, Sangwan, RS, Sangwan, BS, Lassalles, J-P 2001Brassinolide may control aquaporin activities in Arabidopsis thaliana.Planta212199204PubMedGoogle Scholar
  33. 33.
    Mussig, C, Altmann, T 1999Physiology and molecular mode of action of brassinosteroids.Plant Physiol Biochem37163372Google Scholar
  34. 34.
    Mussig, C, Biesgen, C, Lisso, J, Uwer, U, Weiler, EW, Altmann, T 2000A novel stress-inducible 12-oxophytodienoate reductase from Arabidopsis thaliana provides a potential link between brassinosteroid action and jasmonic acid synthesis.J Plant Physiol157143152Google Scholar
  35. 35.
    Mussig, C, Fischer, S, Altmann, T 2002Brassinosteroid-regulated gene expression.Plant Physiol12912411251CrossRefPubMedGoogle Scholar
  36. 36.
    Nakashita, H, Yasuda, M, Nitta, T, Asami, T, Fujioka, S, Arai, Y, Sekimata, K, Takatsuto, S, Yamaguchi, I, Yoshida, S 2003Brassinosteroid functions in a broad range of disease resistance in tobacco and rice.Plant J33887898CrossRefPubMedGoogle Scholar
  37. 37.
    Nam, KH, Li, J 2002BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling.Cell110203212PubMedGoogle Scholar
  38. 38.
    Nover, L, Scharf, KD, Neumann, D 1989Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs.Mol Cell Biol912981308PubMedGoogle Scholar
  39. 39.
    Parsell, DA, Lindquist, S 1993The functions of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins.Annu Rev Genet27437496PubMedGoogle Scholar
  40. 40.
    Peng, P, Li, J 2003Brassinosteroid signal transduction: a mix of conservation and novelty.J Plant growth Regul22(DOI: 10.1007/s00344-003-0059-y)Google Scholar
  41. 41.
    Pustovoitova, TN, Zhdanova, NE, Zholkevich, VN 2001Epibrassinolide increases plant drought resistance.Doklady Biochem Biophys3763638CrossRefGoogle Scholar
  42. 42.
    Rask, L, Andreasson, E, Ekbom, B, Eriksson, S, Pontoppidan, B, Meijer, J 2000Myrosinase: gene family evolution and herbivore defence in Brassicaceae.Plant Mol Biol4293113Google Scholar
  43. 43.
    Ryan, CA 2000The systemin signalling pathway: differential activation of plant defensive genes.Biochim Biophys Acta1477112121PubMedGoogle Scholar
  44. 44.
    Sairam, RK 1994Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regul14173181Google Scholar
  45. 45.
    Salchert, K, Bhalerao, R, Koncz–Kalman, Z, Koncz, C 1998Control of cell elongation and stress responses by steroid hormones and carbon catabolic repression in plants.Philos Trans R Soc Lond B Biol Sci35315171520CrossRefPubMedGoogle Scholar
  46. 46.
    Sanchetto–Martins, G, Franco, LO, de Oliveira, DE 2000Plant glycine-rich proteins: a family or just proteins with a common motif?Biochim Biophys Acta1492114PubMedGoogle Scholar
  47. 47.
    Sasse, J 1999Physiological actions of brassinosteroids.Sakurai, AYokota, TClouse, SD eds. Brassinosteroids Steroidal Plant Hormones.Springer-VerlagTokyo137161Google Scholar
  48. 48.
    Scheer, JM, Ryan, CA 2002The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family.Proc Natl Acad Sci USA9995859590CrossRefPubMedGoogle Scholar
  49. 49.
    Schilling, G, Schiller, C, Otto, S 1991Influence of brassinosteroids on organ relations and enzyme activities of sugar beet plants.Cutler, HGYokota, TAdam, G eds. Brassinosteroids: Chemistry, Bioactivity and Applications. ACS Symp Ser 474.American Chemical SocietyWashington, DC208219Google Scholar
  50. 50.
    Song, WY, Wang, GL, Chen, LL, Kim, HS, Pi, LY, Holsten, T, Gardner, J, Wang, B, Zhai, WX, Zhu, LH, Fauquet, C, Ronald, P 1995A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21.Science27018041806PubMedGoogle Scholar
  51. 51.
    Szekeres, M 2003Brassinosteroid and systemin: two hormones perceived by the same receptor.Trends Plant Sci8102104CrossRefPubMedGoogle Scholar
  52. 52.
    Szekeres, M, Nemeth, K, Koncz–Kalman, Z, Mathur, J, Kauschmann, A, Altmann, T, Redei, GP, Nagy, F, Schell, J, Koncz, C 1996Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis.Cell85171182PubMedGoogle Scholar
  53. 53.
    Wachsman, MB, Lopez, EM, Ramirez, JA, Galagovsky, LR, Coto, CE 2000Antiviral effect of brassinosteroids against herpes virus and arenaviruses.Antiviral Chem Chemother117177Google Scholar
  54. 54.
    Wachsman, MB, Ramirez, JA, Galagovsky, LR, Coto, CE 2002Antiviral activity of brassinosteroid derivatives against measles virus in cell cultures.Antiviral Chem Chemother136166Google Scholar
  55. 55.
    Wang, KL-C, Li, H, Ecker, JR 2002Ethylene biosynthesis and signaling networks.Plant Cell Suppl.S131S151Google Scholar
  56. 56.
    Wang, Z-Y, Seto, H, Fujioka, S, Yoshida, S, Chory, J 2001BRI1 is a critical component of a plasma-membrane receptor for plant steroids.Nature410380383CrossRefPubMedGoogle Scholar
  57. 57.
    Wilen, RW, Sacco, M, Gusta, LV, Krishna, P 1995Effects of 24-epibrassinolide on freezing and thermotolerance of bromegrass (Bromus inermis) cell cultures.Physiol Plant95195202CrossRefGoogle Scholar
  58. 58.
    Yi, HC, Joo, S, Nam, KH, Lee, JS, Kang, BG, Kim, WT 1999Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-l-carboxylate synthase gene family in mung bean (Vigna radiata L.Plant Mol Biol41443454CrossRefPubMedGoogle Scholar
  59. 59.
    Zhu, J-K 2002Salt and drought stress signal transduction in plants.Annu Rev Plant Biol53247273CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Western Ontario, London, OntarioCanada N6A 5B7

Personalised recommendations