Journal of Plant Growth Regulation

, Volume 22, Issue 1, pp 73–81 | Cite as

Hormonal Interactions in Fruit Development

  • Jocelyn A. Ozga
  • Dennis M. Reinecke
Thematic Article


Fruit development involves a complex interplay of cell division, differentiation and expansion of sporophytic and gametophytic tissues that is carefully coordinated temporally and spatially. Plant hormones are signal molecules that regulate many processes of plant development, including fruit development leading to mature fruit and viable mature seed. Auxins, gibberellins, cytokinins, abscisic acid, and ethylene have been implicated at various stages of fruit development. In the past, hormone application studies and hormone analysis studies have supported the hypothesis that fruit development is in part regulated by hormonal interaction. More recently, biochemical, genetic, and molecular studies are beginning to unravel the complexities of how hormones affect fruit development. In the current work, we review selected studies that show the interplay between hormones during fruit development, with an emphasis on the interaction between auxin and gibberellin in pea fruit development.


Fruit development Hormonal interaction Auxin, Gibberellin Pisum sativum Arabidopsis Pericarp Ovary Tomato 



The authors would like to acknowledge Dr. Frank Dennis Jr. and Dr. Robert Bandurski for their support in our initial interest in the study of fruit physiology. This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).


  1. 1.
    Aharoni, A, O’Connell, AP 2002Gene expression analysis of strawberry achene and receptacle maturation using DNA microarrays.J Exp Bot5320732087PubMedCrossRefGoogle Scholar
  2. 2.
    Aloni, R 1987Differentiation of vascular tissues.Annu Rev Plant Physiol38179204CrossRefGoogle Scholar
  3. 3.
    Bohner, J, Bangerth, F 1988Cell number, cell size and hormone levels in semi-isogenic mutants of Lycopersicon pimpinellifolium differing in fruit size.Physiol Plant72316320CrossRefGoogle Scholar
  4. 4.
    Brenner, ML, Cheikh, N 1995The role of hormones in photosynthate partitioning and seed filling.Davies, PJ eds. Plant hormones: physiology, biochemistry, and molecular biology. 2nd ed.Klewer Academic PublishersDordrecht, The Netherlands649670Google Scholar
  5. 5.
    Carbonell, J, García-Martínez, JL 1980Fruit-set of unpollinated ovaries of Pisum sativum L.Planta147451456CrossRefGoogle Scholar
  6. 6.
    Chory, J, Wu, D 2001Weaving the complex web of signal transduction.Plant Physiol1257780PubMedCrossRefGoogle Scholar
  7. 7.
    Coombe, BG 1960Relationship of growth and development to changes in sugars, auxins, and gibberellins in fruit of seeded and seedless varieties of Vitis vinifera. Plant Physiol35241250PubMedCrossRefGoogle Scholar
  8. 8.
    Cooper, DC 1938Embryology of Pisum sativum. Bot Gaz100123132CrossRefGoogle Scholar
  9. 9.
    Crane, J 1964Growth substances in fruit setting and development.Annu Rev Plant Physiol15303326CrossRefGoogle Scholar
  10. 10.
    Eeuwens, CJ, Schwabe, WW 1975Seed and pod wall development in Pisum sativum L. in relation to extracted and applied hormones.J Exp Bot26114CrossRefGoogle Scholar
  11. 11.
    Emmanuel, E, Levy, AA 2002Tomato mutants as tools for functional genomics.Curr Opin Plant Biol5112117PubMedCrossRefGoogle Scholar
  12. 12.
    Estruch, JJ, Beltrán, JP 1991Changes in invertase activities precede ovary growth induced by gibberellic acid in Pisum sativum. Physiol Plant81319326CrossRefGoogle Scholar
  13. 13.
    Fos, M, Nuez, F, García-Martínez, JL 2000The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries.Plant Physiol122471479PubMedCrossRefGoogle Scholar
  14. 14.
    Fos, M, Proaño, K, Nuez, F, García-Martínez, JL 2001Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato.Physiol Plant111545550PubMedCrossRefGoogle Scholar
  15. 15.
    Francis, D, Sorrell, DA 2001The interface between the cell cycle and plant growth regulators: a mini review.Plant Growth Regul33112CrossRefGoogle Scholar
  16. 16.
    García-Martínez, JL, Carbonell, J 1980Fruit-set of unpollinated ovaries of Pisum sativum L.Planta147451456CrossRefGoogle Scholar
  17. 17.
    García-Martínez, JL, López-Diaz, I, Sánchez-Beltrán, MJ, Phillips, AL, Ward, DA, Gaskin, P, Hedden, P 1997Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development.Plant Mol Biol3310731084PubMedCrossRefGoogle Scholar
  18. 18.
    García-Martínez, JL, Santes, C, Crocker, SJ, Hedden, P 1991Identification, quantitation and distribution of gibberellins in fruits of Pisum sativum L. cv. Alaska during pod development.Planta1845360CrossRefGoogle Scholar
  19. 19.
    Gillaspy, G, Ben-David, H, Gruissem, W 1993Fruits: a developmental perspective.Plant Cell514391451PubMedCrossRefGoogle Scholar
  20. 20.
    Jahnke, S, Bier, D, Estruch, JJ, Beltrán, JP 1989Distribution of photoassimilates in the pea plant: chronology of events in non-fertilized ovaries and effects of gibberellic acid.Planta1805360CrossRefGoogle Scholar
  21. 21.
    Katayama, M, Thiruvikraman, SV, Marumo, S 1988Localization of 4-chloroindole-3-acetic acid in seeds of Pisum sativum and its absence from all other organs.Plant Cell Physiol29889891Google Scholar
  22. 22.
    Koning, AJ, Tanimoto, EY, Kiehne, K, Rost, T, Comai, L 1991Cell-specific expression of plant histone H2A genes.Plant Cell3657665PubMedCrossRefGoogle Scholar
  23. 23.
    Lester, DR, Ross, JJ, Davies, PJ, Reid, JB 1997Mendel’s stem length gene (Le) encodes a gibberellin 3ß-hydroxylase.Plant Cell914351443PubMedCrossRefGoogle Scholar
  24. 24.
    Ludevid, D, Höfte, H, Himelblau, E, Chrispeels, MJ 1992The expression pattern of the tonoplast intrinsic protein γ-TIP in Arabidopsis thaliana is correlated with cell enlargement.Plant Physiol10016331639PubMedCrossRefGoogle Scholar
  25. 25.
    Magnus, V, Ozga, JA, Reinecke, DM, Pierson, GL, Larue, TA, Cohen, JD, Brenner, ML 19974-chloroindole-3-acetic acid and indole-3-acetic acid in Pisum sativum. Phytochemistry46675681CrossRefGoogle Scholar
  26. 26.
    Martin, DN, Proebsting, WM, Hedden, P 1997Mendel’s dwarfing gene: cDNAs from the Le alleles and function of the expressed proteins.Proc Natl Acad Sci USA9489078911PubMedCrossRefGoogle Scholar
  27. 27.
    Martin, DN, Proebsting, WM, Parks, TD, Dougherty, WG, Lange, T, Lewis, MJ, Gaskin, P, Hedden, P 1996Feed-back regulation of gibberellin biosynthesis and gene expression in Pisum sativum L.Planta200159166PubMedCrossRefGoogle Scholar
  28. 28.
    Marumo, S, Hattori, H, Abe, H, Munakata, K 1968Isolation of 4-chloroindolyl-3-acetic acid from immature seeds of Pisum sativum. Nature219959960PubMedCrossRefGoogle Scholar
  29. 29.
    Maurel, C 1997Aquaporins and water permeability of plant membranes.Annu Rev Plant Physiol Plant Mol Biol48399429PubMedCrossRefGoogle Scholar
  30. 30.
    Maurel, C, Reizer, J, Schroeder, JI, Chrispeels, MJ 1993The vacuolar membrane protein γ-TIP creates water-specific channels in Xenopus oocytes.EMBO J1222412247PubMedGoogle Scholar
  31. 31.
    Mok, MC 1994Cytokinins and plant development—an overview.Mok, DWSMok, MC eds. Cytokinins-chemistry, activity, and functionCRC PressBoca Raton155166Google Scholar
  32. 32.
    Muir, RM 1942Growth hormones as related to the setting and development of fruits in Nicotiana tobaccum. Am J Bot29716720CrossRefGoogle Scholar
  33. 33.
    Ngo, P, Ozga, JA, Reinecke, DM 2002Specificity of auxin regulation of gibberellin 20-oxidase gene expression in pea pericarp.Plant Mol Biol49439448PubMedCrossRefGoogle Scholar
  34. 34.
    Nitsch, JP 1951Growth and development in vitro of excised ovaries.Am J Bot38566577CrossRefGoogle Scholar
  35. 35.
    Nitsch, JP 1952Plant hormones in the development of fruits.Q Rev Biol273357PubMedCrossRefGoogle Scholar
  36. 36.
    Nitsch, JP 1970Hormonal factors in growth and development.Hulme, AC eds. The biochemistry of fruits and their products.Academic PressLondon and New York427472Google Scholar
  37. 37.
    O’Neill, SD 1997Pollination regulation of flower development.Annu Rev Plant Physiol Plant Mol Biol48547574PubMedCrossRefGoogle Scholar
  38. 38.
    Ozga, JA, Brenner, ML, Reinecke, DM 1992Seed effects on gibberellin metabolism in pea pericarp.Plant Physiol1008894PubMedCrossRefGoogle Scholar
  39. 39.
    Ozga, JA, Reinecke, DM 1999Interaction of 4-chloroindole-3-acetic acid and gibberellins in early pea fruit development.Plant Growth Regul273338CrossRefGoogle Scholar
  40. 40.
    Ozga, JA, van Huizen, R, Reinecke, DM 2002Hormone and seed-specific regulation of pea fruit growth.Plant Physiol12813791389PubMedCrossRefGoogle Scholar
  41. 41.
    Ozga, JA, Yu, J, Reinecke, DM 2003Pollination-, development-, and auxin-specific regulation of gibberellin 3β-hydroxylase gene expression in pea fruit and seeds.Plant Physiol13111371146PubMedCrossRefGoogle Scholar
  42. 42.
    Pharis, RP, King, RW 1985Gibberellins and reproductive development in seed plants.Annu Rev Plant Physiol36517568CrossRefGoogle Scholar
  43. 43.
    Rebers, M, Kaneta, T, Kawaide, H, Yamaguchi, S, Yang, Y-Y, Imai, R, Sekimoto, H, Kamiya, Y 1999Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato.Plant J17241250PubMedCrossRefGoogle Scholar
  44. 44.
    Reinecke, DM 19994-Chloroindole-3-acetic acid and plant growth.Plant Growth Regul27313CrossRefGoogle Scholar
  45. 45.
    Reinecke, DM, Ozga, JA, Magnus, V 1995Effect of halogen substitution of indole-3-acetic acid on biological activity in pea fruit.Phytochemistry4013611366CrossRefGoogle Scholar
  46. 46.
    Reinecke, DM, Ozga, JA, Ilić, N, Magnus, V, Kojić-Prodić, B 1999Molecular properties of 4-substituted indole-3-acetic acids affecting pea pericarp elongation.Plant Growth Regul273948CrossRefGoogle Scholar
  47. 47.
    Rodrigo, MJ, García-Martínez, JL 1998Hormonal control of parthenocarpic ovary growth by the apical shoot in pea.Plant Physiol116511518PubMedCrossRefGoogle Scholar
  48. 48.
    Rodrigo, MJ, García-Martínez, JL, Santes, CM, Gaskin, P, Hedden, P 1997The role of gibberellins A1 and A3 in fruit growth of Pisum sativum L. and the identification of gibberellins A4 and A7 in young seeds.Planta201446455CrossRefGoogle Scholar
  49. 49.
    Rodrigo, MJ, López-Diaz, I, García-Martínez, JL 1998The characterization of gio, a new pea mutant, shows the role of indoleacetic acid in the control of fruit development by the apical shoot.Plant J148390PubMedCrossRefGoogle Scholar
  50. 50.
    Ross, JJ, O’Neill, DP, Smith, JJ, Huub, L, Kerckhoffs, J, Elliott, RC 2000Evidence that auxin promotes gibberellin A1 biosynthesis in pea.Plant J21547552PubMedCrossRefGoogle Scholar
  51. 51.
    Sastry, KKS, Muir, RM 1963Gibberellin: effect on diffusible auxin in fruit development.Science140494495PubMedCrossRefGoogle Scholar
  52. 52.
    Scorza, R, May, LG, Purnell, B, Upchurch, B 1991Differences in number and area of mesocarp cells between small- and large-fruited peach cultivars.J Am Soc Hort Sci116861864Google Scholar
  53. 53.
    Smith, WH 1950Cell-multiplication and cell-enlargement in the development of the flesh of the apple fruit.Ann Bot (London) NS142338Google Scholar
  54. 54.
    Sponsel, V 1982Effects of applied gibberellins and naphthylacetic acid on pod development in fruits of Pisum sativum L. cv. Progress No. 9.J Plant Growth Regul1147152Google Scholar
  55. 55.
    Sponsel, VM 1995The biosynthesis and metabolism of gibberellins in higher plants.Davies, PJ eds. Plant hormones: physiology, biochemistry and molecular biology. 2 ed.Kluwer Academic PublishersDordrecht, The Netherlands6697Google Scholar
  56. 56.
    van Huizen, R, Ozga, JA, Reinecke, DM 1996Influence of auxin and gibberellin on in vivo protein synthesis during early pea fruit growth.Plant Physiol1125359PubMedGoogle Scholar
  57. 57.
    van Huizen, R, Ozga, JA, Reinecke, DM 1997Seed and hormonal regulation of gibberellin 20-oxidase expression in pea pericarp.Plant Physiol115123128PubMedGoogle Scholar
  58. 58.
    van Huizen, R, Ozga, JA, Reinecke, DM, Twitchin, B, Mander, LN 1995Seed and 4-chloroindole-3-acetic acid regulation of gibberellin metabolism in pea pericarp.Plant Physiol10912131217PubMedCrossRefGoogle Scholar
  59. 59.
    Vivian-Smith, A, Luo, M, Chaudhury, A, Koltunow, A 2001Fruit development is actively restricted in the absence of fertilization in Arabidopsis. Development12823212331PubMedGoogle Scholar
  60. 60.
    Weber, H, Borisjuk, L, Heim, U, Buchner, P, Wobus, U 1995Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression.Plant Cell718351846PubMedCrossRefGoogle Scholar
  61. 61.
    Wittwer, SH, Tolbert, NE 19602-Choroethyl trimethylammonium chloride and related compounds as plant growth substances. V. Growth, flowering, and fruiting responses as related to those induced by auxin and gibberellin.Plant Physiol35871877PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang, XS, O’Neill, SD 1993Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination.Plant Cell5403418PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Plant Physiology and Molecular Biology Research Group, Department of Agricultural, Food, and Nutritional ScienceUniversity of Alberta, Edmonton, Alberta, T6G 2P5Canada

Personalised recommendations