Journal of Plant Growth Regulation

, Volume 22, Issue 1, pp 25–31 | Cite as

Hormone Cross-Talk in Seed Dormancy

Thematic Article

Abstract

The choice to become dormant versus continuing to grow is observed in a variety of organisms in response to specific developmental and environmental signals. In higher plants this is most obvious during both the establishment and breaking of seed dormancy. With the advent of molecular genetic analysis, particularly in Arabidopsis, genes involved in the establishment and breaking of seed dormancy have been identified. Genetic analysis suggests a web of hormone-derived information is required in the regulation of these processes. In this review we focus on examples of where hormones, and in particular cross-talk between hormones, is used to regulate both the establishment and release of seed dormancy. The use of multiple hormones that overlap in their control of specific developmental programs allows seeds to be flexible in making decisions in response to specific developmental and environmental cues.

Keywords

Hormone mutants Arabidopsis Gibberellins Abscisic acid Ethylene Brassinosteroid Seed development Signal transduction Hormone interaction 

Notes

Acknowledgements

The authors thank Nancy Dengler, Brenda Chow and Sonia Gazzarini for helpful discussion.

References

  1. 1.
    Abel, S, Nguyen, MD, Chow, W, Theologis, A 1995ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-l-carboxylate synthase in Arabidopsis thaliana. Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin [corrected].J Biol Chem270190939, 26020CrossRefPubMedGoogle Scholar
  2. 2.
    Baskin, CC, Baskin, JM 1998Seeds: ecology, biogeography, and evolution of dormancy and germination.Academic PressSan DiegoGoogle Scholar
  3. 3.
    Beaudoin, N, Serizet, C, Gosti, F, Giraudat, J 2000Interactions between abscisic acid and ethylene signalling cascades.Plant Cell1211031105CrossRefPubMedGoogle Scholar
  4. 4.
    Bleecker, AB, Esch, JJ, Hall, AE, Rodriguez, FI, Binder, BM 1998The ethylene-receptor family from Arabidopsis: structure and function.Philos Trans R Soc Lond B Biol Sci35314051412CrossRefPubMedGoogle Scholar
  5. 5.
    Bouquin, T, Meier, C, Foster, R, Nielse, ME, Mundy, J 2001Control of specific gene expression by gibberellin and brassinosteroid.Plant Physiol127450458CrossRefPubMedGoogle Scholar
  6. 6.
    Brady, SM, Sarkar, SF, Bonetta, D, McCourt, P 2003The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signalling and lateral root development in Arabidopsis.Plant JinpressGoogle Scholar
  7. 7.
    Clouse, SD, Sasse, JM 1998Brassinosteroids: essential regulators of plant growth and development.Annu Rev Plant Physiol Plant Mol Biol49427451CrossRefPubMedGoogle Scholar
  8. 8.
    Debeaujon, I, Koornneef, M 2000Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid.Plant Physiol122415424CrossRefPubMedGoogle Scholar
  9. 9.
    Dubreucq, B, Berger, N, Vincent, E, Boisson, M, Pelletier, G, Caboche, M, Lepiniec, L 2000The Arabidopsis AtEPR1 extensin-like gene is specifically expressed in endosperm during seed germination.Plant J23643652CrossRefPubMedGoogle Scholar
  10. 10.
    Gazzarini, S, McCourt, P 2003Cross talk in plant hormone signalling: What Arabidopsis mutants are telling us.Ann BotanyinpressGoogle Scholar
  11. 11.
    Ghassemian, M, Nambara, E, Cutler, S, Kawaide, H, Kamiya, Y, McCourt, P 2000Regulation of abscisic acid signalling by the ethylene response pathway in Arabidopsis.Plant Cell1211171126CrossRefPubMedGoogle Scholar
  12. 12.
    Grossmann, K, Scheltrup, F, Kwiatkowski, J, Caspar, G 1996Induction of abscisic acid is a common effect of auxin herbicides in susceptible plants.J Plant Physiol149475478Google Scholar
  13. 13.
    Grsic, S, Kircheim, B, Pieper, K, Fritsch, M, Hilgenberg, W, Ludwig-Muller, J 1999Induction of auxin biosynthetic enzymes by jasmonic acid and in clubroot diseased Chinese cabbage plants.Physiol Plantl05521531CrossRefGoogle Scholar
  14. 14.
    Hansen, H, Grossmann, K 2000Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition.Plant PhysiolPlant Physiol12414371241438Google Scholar
  15. 15.
    Ikeda, A, Sonoda, Y, Vernieri, P, Perata, P, Hirochika, H, Yamaguchi, J 2002The slender rice mutant with constitutively activated gibberellin signal transduction, has enhanced capacity for abscisic acid level.Plant Cell Physiol43974979CrossRefPubMedGoogle Scholar
  16. 16.
    Karssen, CM, Zagorski, S, Kepczynski, J, Groot, SPC 1989Key role for endogenous gibberellins in the control of seed germination.Ann Botany637180Google Scholar
  17. 17.
    Kauschmann, A, Jessop, A, Koncz, C, Szekeres, M, Willmitzer, L, Altmann, T 1996Genetic evidence for an essential role of brassinosteroids in plant development.Plant J9701713CrossRefGoogle Scholar
  18. 18.
    Kepczynski, J, Bihun, M, Kepczynska, E 1997

    .

    Kanellis, AKChang, CKende, HGrierson, H eds. Biology and biotechnology of the plant hormone ethylene.113113113122
    Google Scholar
  19. 19.
    Kepczynski, J, Kepczynska, E 1997Ethylene in seed dormancy and germination.Physiol Plant101720726CrossRefGoogle Scholar
  20. 20.
    Koornneef, M, Bentsink, L, Hillhorst, H 2002Seed dormancy and germination.Curr Opin Plant Biol53336CrossRefPubMedGoogle Scholar
  21. 21.
    Koornneef, M, Jorna, ML, Brinkhorst-van der Swan, DLC, Karssen, CM 1982The isolation and analysis of abscisic acid (ABA)-deficient mutants by selection of induced revertants in non-germinating gibberellin-sensitive lines of Arabidopsis thaliana (L.)Heynh Theor Appl Genl61385393Google Scholar
  22. 22.
    Koorneef, M, Karssen, CM 1994

    Seed dormancy and germination.

    Somerville, CRMeyerowitz, EM eds. ArabidopsisCold spring Harbor Laboratory PressNew York313334
    Google Scholar
  23. 23.
    Leon-Kloosterziel, KM, Gil, MA, Ruijs, GJ, Jacobsen, SE, Olszewski, NE, Schwartz, SH, Zeevart, JAD, Koornneef, M 1996Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci.Plant J10655661CrossRefPubMedGoogle Scholar
  24. 24.
    Leubner-Metzger, G 2001Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways.Planta213758763CrossRefPubMedGoogle Scholar
  25. 25.
    Leubner-Metzger, G 2002Seed after-ripening and over-expression of class I B-1,3-glucanase confer maternal effects on tobacco testa rupture and dormancy release.Planta Med215959968Google Scholar
  26. 26.
    Leyser, HM, Lincoln, CA, Timpte, C, Lammer, D, Turner, J, Estelle, M 1993 Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1.Nature364161164CrossRefPubMedGoogle Scholar
  27. 27.
    Medford, JI, Elmer, JS, Klee, HJ 1991Molecular cloning and characterization of genes expressed in shoot apical meristems.Plant Cell3359370CrossRefPubMedGoogle Scholar
  28. 28.
    McCourt, P 1999Genetic analysis of hormone signalling.Annu Rev Plant Physiol Plant Mol Biol50219243CrossRefPubMedGoogle Scholar
  29. 29.
    Nambara, E, Akazawa, T, McCourt, P 1991Effects of the gibberellin biosynthetic inhibitor uniconazol on mutants of Arabidopsis.Plant Physiol97736738CrossRefPubMedGoogle Scholar
  30. 30.
    Nambara, E, Naito, S, McCourt, P 1992A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele.Plant J2435441CrossRefGoogle Scholar
  31. 31.
    O’Neill, DP, Ross, JJ 2002Auxin regulation of the gibberellin pathway in pea.Plant Physiol13019741982CrossRefPubMedGoogle Scholar
  32. 32.
    Reid, MS 1995

    Ethylene in plant growth, development and senescence.

    Davies, PJ eds. Plant hormones.Kluwer Academic PublishersDordrecht
    Google Scholar
  33. 33.
    Ross, JJ, O’Neill, DP, Wolbang, CM, Symons, GM, Reid, JB 2001Auxin-gibberellin interactions and their role in plant growth.J Plant Growth Regul20336353CrossRefPubMedGoogle Scholar
  34. 34.
    Schumacher, K, Chory, J 2000Brassinosteroid signal transduction: still casting the actors.Curr Opin Plant Biol37984CrossRefPubMedGoogle Scholar
  35. 35.
    Steber, CM, Cooney, SE, McCourt, P 1998Isolation of the GA-response mutant sly1 as a suppressor of abi1-1 in Arabidopsis thaliana. Genetics149509521PubMedGoogle Scholar
  36. 36.
    Steber, CM, McCourt, P 2001A role for brassinosteroids in germination in Arabidopsis.Plant Physiol125763769CrossRefPubMedGoogle Scholar
  37. 37.
    Srivastava, LM 2002Plant growth and development: hormones and environment.Academic PressSan Diego431471CrossRefGoogle Scholar
  38. 38.
    Takeuchi, Y, Worsham, AD, Awad, AE 1991

    Effects of brassinolide on conditioning and germination of witchweed (Striga asiatica) seeds.

    Cuttler, HGYokota, TAdam, G eds. Brassinosteroids: chemistry, bioactivity and application.ACS Symposium Series 474Washington DC298305
    CrossRefGoogle Scholar
  39. 39.
    Takeuchi, Y, Omigawa, Y, Ogasawara, M, Yoneyama, K, Konnai, M, Worsham, D 1995Effects of brassinosteroids on conditioning and germination of clover broomrape (Orobranche minor) seeds.J Plant Growth Regul16153160CrossRefGoogle Scholar
  40. 40.
    Tiryaki, I, Staswick, PE 2002An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signalling mutant axr1. Plant Physiol130887894CrossRefPubMedGoogle Scholar
  41. 41.
    Wolbang, CM, Ross, JJ 2001Auxin promotes gibberellin biosynthesis in decapitated tobacco plants.Planta214153157CrossRefPubMedGoogle Scholar
  42. 42.
    Yamaguchi, T, Wakizuka, T, Hirai, K, Fujii, S, Fujita, A 1987Stimulation of germination in aged rice seeds by pretreatment with brassinolide.Proc Plant Growth Regul Soc Am142627Google Scholar
  43. 43.
    Yi, HC, Joo, S, Nam, KH, Lee, JS, Kang, BG, Kim, WT 1999Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.).Plant Mol Biol41443454CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of BotanyUniversity of Toronto, 25 Willcocks St., Toronto, OntarioCanada, M5S 3B2

Personalised recommendations