Advertisement

Journal of Plant Growth Regulation

, Volume 21, Issue 4, pp 368–382 | Cite as

Roots and Their Symbiotic Microbes: Strategies to Obtain Nitrogen and Phosphorus in a Nutrient-Limiting Environment

  • Michelle R. Lum
  • Ann M. HirschEmail author
Thematic Article

Abstract

The association between Rhizobium and legumes and that between arbuscular mycorrhizal (AM) fungi and most land plants display a remarkable degree of similarity. Both events involve the recognition of, entrance into, and coexistence within the plant root, with the development of a specialized interface that always separates the two partners and at which nutrient exchange occurs. Molecules produced by rhizobia during the early stages of the symbiosis are related to fungal chitin, and the plant responds to both microbes with an increase in the production of flavonoids, which may assist in recognition and development of the symbioses. Many of the same plant genes are up-regulated in the two symbiotic pathways, and notably plants that are Nod are often defective in the AM association as well. However, there are a number of differences between the associations, and these are important for understanding the relationship between the two symbioses. The Rhizobium and AM symbioses will be compared and the question of whether the nitrogen-fixing association evolved from the much more ancient AM symbiosis will be discussed.

Keywords

Rhizobium Legume Arbuscular mycorrhizal fungi Symbiosis 

Notes

Acknowledgements

This paper was written in partial fulfillment of the Ph.D. thesis of MRL to the Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles (UCLA). We thank our lab mates, especially Angie Lee and Walter Giordano, for helpful comments and we also are grateful to M. Kowalczyk for her help with the illustrations. We apologize to authors whose work has not been cited because of space constraints. This research was supported in part by National Science Foundation grant 97-23882 and BioStar grant S98-86 to AMH. A USPHS National Research Service Award GM07185 and UC Mexus grant 017451 supported MRL.

References

  1. 1.
    Albrecht, C, Geurts, R, Lapeyrie, F, Bisseling, T 1998Endomycorrhizae and rhizobial nod factors activate signal transduction pathways inducing PsENOD5 and PsENOD12 expression in which Sym8 is a common step.Plant J15605615CrossRefGoogle Scholar
  2. 2.
    Azcon-Aguilar, C, Rodriguez-Navarro, DN, Barea, JM 1981Effects of ethrel on the formation and responses to VA mycorrhiza in Medicago and Triticum.Plant Soil60461468CrossRefGoogle Scholar
  3. 3.
    Barea, JM, Azcon-Aguilar, C 1982Production of plant growth-regulating substances by vesicular-arbuscular mycorrhizal fungus Glomus mosseae.Appl Environ Microbiol43810813PubMedGoogle Scholar
  4. 4.
    Barker, SJ, Tagu, D 2000The roles of auxins and cytokinins in mycorrhizal symbioses.J Plant Growth Regul19144154PubMedGoogle Scholar
  5. 5.
    Bécard, G, Douds, DD, Pfeffer, PE 1992Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols.Appl Environ Microbiol58821825PubMedGoogle Scholar
  6. 6.
    Bécard, G, Taylor, LP, Douds Jr., DD, Pfeffer, PE, Doner, LW 1995Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbioses.Mol Plant-Microbe Interact8252258CrossRefGoogle Scholar
  7. 7.
    Bentivenga, SP, Morton, JB 1994Systematics of Glomalean endomycorrhizal fungi: current views and future direction.Pfleger, FLLinderman, RG eds. Mycorrhizae and Plant HealthSt. Paul, MNAPS Press283308Google Scholar
  8. 8.
    Blilou, I, Ocampo, JA, García-Garrido, JM 1999Resistance of pearoots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid.J Exp Bot5016631668CrossRefGoogle Scholar
  9. 9.
    Blilou, I, Ocampo, JA, García-Garrido, JM 2000Induction of Ltp (Lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae.J Exp Bot5119691977PubMedCrossRefGoogle Scholar
  10. 10.
    Bonfante-Fasolo, P, Faccio, A, Perotto, S, Schubert, A 1990Correlation between chitin distribution and cell wall morphology in the mycorrhizal fungus Glomus versiforme.Mycol Res94157165CrossRefGoogle Scholar
  11. 11.
    Bradbury, SM, Peterson, RL, Bowley, SR 1991Interaction between three alfalfa nodulation genotypes and two Glomus species.New Phytol119115120CrossRefGoogle Scholar
  12. 12.
    Bryan, JA, Berlyn, GP, Gordon, JC 1996Toward a new concept of the evolution of symbiotic nitrogen fixation in the Leguminosae.Plant Soil186151159CrossRefGoogle Scholar
  13. 13.
    Buée, M, Rossignol, M, Jauneau, A, Ranjeva, R, Bécard, G 2000The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates.Mol Plant–Microbe Interact13693698PubMedCrossRefGoogle Scholar
  14. 14.
    Caetano-Anolles, G, Crist-Estes, DK, Bauer, WD 1988Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes.J Bacteriol17031643169PubMedGoogle Scholar
  15. 15.
    Catoira, R, Galera, C, de Billy, F,  et al. 2000Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway.Plant Cell1216471665PubMedCrossRefGoogle Scholar
  16. 16.
    Chabot, S, Bel-Rhlid, R, Chênevert, R, Piché, Y 1992Hyphal growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker & Hall, by the activity of structurally specific flavonoid compounds under CO2-enriched conditions.New Phytol122461467CrossRefGoogle Scholar
  17. 17.
    Charon, C, Sousa, C, Crespi, M, Kondorosi, A 1999Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti.Plant Cell1119531965PubMedCrossRefGoogle Scholar
  18. 18.
    Cordier, C, Pozo, MJ, Barea, JM, Gianinazzi, S, Gianinazzi-Pearson, V 1998Cell defense responses associated with localized and systemic resistance to Phytophthora induced in tomato by an arbuscular mycorrhizal fungus.Mol Plant-Microbe Interact1110171028CrossRefGoogle Scholar
  19. 19.
    de Bary, A 1879Die Erscheinung der Symbiose.Naturforsch. VersammCassel, LI, Tagebl.121Google Scholar
  20. 20.
    de Faria, SM, de Lima, HC, Olivares, FL, Melo, RB, Xavier, RB 2000Nodulaçao em especies florestais, especifidade hospedeira e implicaçoes na sistemática de leguminosae.Siqueira, JOMoreira, FMSLopes, ASGuilherme, LRGFaquin, VFurtini Neto, AECarvalho, JG eds. Soil fertility, soil biology, and plant nutrition interrelationships.Sociedade Brasileira de Ciencias do Solo-Universidade Federal de Lavras Dept.Solos667686Google Scholar
  21. 21.
    Dixon, RA, Harrison, MJ, Lamb, CJ 1994Early events in the activation of plant defense responses.Ann Rev Phytopath32479501CrossRefGoogle Scholar
  22. 22.
    Djordjevic, MA, Mathesius, U, Arioli, T, Weinman, JJ, Gaertner, E 1997Chalcone synthase gene expression in transgenic subterranean clover correlates with localised accumulation of flavonoids.Aust J Plant Physiol24119132CrossRefGoogle Scholar
  23. 23.
    Doyle, JJ, Doyle, JL, Ballenger, JA, Dickson, EE, Kajita, T, Ohashi, H 1997A phylogeny of the chloroplast gene rbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation.Am J Bot84541554CrossRefGoogle Scholar
  24. 24.
    Duc, G, Trouvelot, A, Gianinazzi-Pearson, V, Gianinazzi, S 1989First report of non-mycorrhizal plant mutants (Myc) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.).Plant Sci60215222CrossRefGoogle Scholar
  25. 25.
    Dugassa, GD, von Alten, H, Schönbeck, F 1996Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogens.Plant Soil185173182CrossRefGoogle Scholar
  26. 26.
    Elias, KS, Safir, GR 1987Hyphal elongation of Glomus fasciculatus in response to root exudates.Appl Environ Microbiol5319281933PubMedGoogle Scholar
  27. 27.
    Endre, G, Kereszt, A, Kevei, Z, Mihacea, S, Kaló, P, Kiss, GB 2002A receptor kinase gene regulating symbiotic nodule development.Nature417962966PubMedCrossRefGoogle Scholar
  28. 28.
    Fang, Y, Hirsch, AM 1998Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa.Plant Physiol1165368PubMedCrossRefGoogle Scholar
  29. 29.
    Gadkar, V, David-Schwartz, R, Kunik, T, Kapulnik, Y 2001Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition.Plant Physiol12714931499PubMedCrossRefGoogle Scholar
  30. 30.
    Geil, RD, Guinel, FC 2002Effects of elevated substrate-ethylene on colonization of leek (Allium porrum) by the arbuscular mycorrhizal fungus Glomus aggregatum.Can J Bot80114119CrossRefGoogle Scholar
  31. 31.
    Geil, RD, Peterson, R, Guinel, FC 2001Morphological alterations of pea (Pisum sativum cv. Sparkle) arbuscular mycorrhizas as a result of exogenous ethylene treatment.Mycorrhiza11137143CrossRefGoogle Scholar
  32. 32.
    Gianinazzi-Pearson, V, Branzanti, B, Gianinazzi, S 1989In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids.Symbiosis7243256Google Scholar
  33. 33.
    Gianinazzi-Pearson, V, Dumas-Gaudot, E, Gollotte, A, Tahiri-Alaoui, A, Gianinazzi, S 1996Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi.New Phytol1334557CrossRefGoogle Scholar
  34. 34.
    Gianinazzi-Pearson, V, Smith, SE, Gianinazzi, S, Smith, FA 1991Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V. Is H+-ATPase, a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces?New Phytol1176174CrossRefGoogle Scholar
  35. 35.
    Gianinazzi-Pearson, V, Arnould, C, Oufattole, M, Arango, M, Gianinazzi, S 2000Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco.Planta211609613PubMedCrossRefGoogle Scholar
  36. 36.
    Giordano, WF, Lum, MR, Hirsch, AM 2002Effects of a Nod-factor-overproducing strain of Sinorhizobium meliloti on the expression of the ENOD40 gene in Melilotus alba.Can J Bot80907915CrossRefGoogle Scholar
  37. 37.
    Giovannetti, M, Sbrana, C, Avio, L, Citernesi, AS, Logi, C 1993Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages.New Phytol125587593CrossRefGoogle Scholar
  38. 38.
    Giovannetti, M, Sbrana, C, Citernesi, AS, Avio, L 1996Analysis of factors involved in fungal recognition responses to host-derived signals by arbuscular mycorrhizal fungi.New Phytol1336571CrossRefGoogle Scholar
  39. 39.
    Gresshoff, PM, Stiller, J, Maguire, T 2001Integrated functional genomics to define the plant's function in symbiotic nodulation.Finan, TO'Brian, MLayzell, DVessey, KNewton, W eds. Nitrogen fixation: global perspectivesCABI PublishingNew York9598Google Scholar
  40. 40.
    Grobbelaar, N, Clarke, B, Hough, MC 1971The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L. III. The effect of carbon dioxide and ethylene.Plant SoilSpec215223Google Scholar
  41. 41.
    Gryndler, M, Hrselová, H, Chvátalová, I,  et al. 1997An improved procedure for root surface disinfection suitable for observations of proliferation of intraradical hyphae of arbuscular mycorrhizal fungus Glomus fistulosum.Folia Microbiol42489494CrossRefGoogle Scholar
  42. 42.
    Harborne, JB, Williams, CA 2000Advances in flavonoid research since 1992.Phytochemistry55481504PubMedCrossRefGoogle Scholar
  43. 43.
    Harrison, MJ, Dixon, RA 1993Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula.Mol Plant-Microbe Interact6643654CrossRefGoogle Scholar
  44. 44.
    Harrison, MJ, Dixon, RA 1994Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme.Plant J6920CrossRefGoogle Scholar
  45. 45.
    Harrison, MJ 1996A sugar transporter from Medicago truncatula: altered expression pattern in roots during vesicular-arbuscular (VA) mycorrhizal associations.Plant J9491503PubMedCrossRefGoogle Scholar
  46. 46.
    Harrison, MJ 1999Biotrophic interfaces and nutrient transport in plant/fungal symbioses.J Exp Bot5010131022CrossRefGoogle Scholar
  47. 47.
    Hartwig, UA, Joseph, CM, Phillips, DA 1991Flavonoids released naturally from alfalfa seeds enhance growth rate of Rhizobium meliloti.Plant Physiol95797803PubMedCrossRefGoogle Scholar
  48. 48.
    Hirsch, AM 1992Developmental biology of legume nodulation.New Phytol122211237CrossRefGoogle Scholar
  49. 49.
    Hirsch, AM 1999Role of lectins (and rhizobial exopolysaccharides) in legume nodulation.Curr Opin Plant Biol2320326PubMedCrossRefGoogle Scholar
  50. 50.
    Holford, ICR 1997Soil phosphorus: its measurement, and its uptake by plants.Aust J Soil Res35227239CrossRefGoogle Scholar
  51. 51.
    Hungria, M, Phillips, DA 1993Effects of a seed color mutation on rhizobial nod-gene-inducing flavonoids and nodulation in common bean.Mol Plant-Microbe Interact6418422CrossRefGoogle Scholar
  52. 52.
    Ishii, T, Shrestha, YH, Matsumoto, I, Kadoya, K 1996Effect of ethylene on the growth of vesicular-arbuscular mycorrhizal fungi and on the mycorrhizal formation of trifoliate orange roots.J Japan Soc Hort Sci65525529CrossRefGoogle Scholar
  53. 53.
    Kaiser, BN, Finnegan, PM, Tyerman, SD, Whitehead, LF, Bergersen, FJ, Day, DA, Udvardi, MK 1998Characterization of an ammonium transport protein from the peribacteroid membrane of soybean nodules.Science28112021206PubMedCrossRefGoogle Scholar
  54. 54.
    Lambais, MR, Mehdy, MC 1993Suppression of endochitinase, ß-1,3-endoglucanase, and chalcone isomerase expression in bean vesicular-arbuscular mycorrhizal roots under different soil phosphate conditions.Mol Plant-Microbe Interact67583CrossRefGoogle Scholar
  55. 55.
    LaRue, TA, Weeden, NF 1994The symbiosis genes of the host.Kiss, GBEndre, G eds. Proceedings of the 1st European Nitrogen Fixation ConferenceSzegedOfficina Press147151Google Scholar
  56. 56.
    Lee, KH, LaRue, TA 1992Exogenous ethylene inhibits nodulation of Pisum sativum L. cv. Sparkle.Plant Physiol10017591763PubMedCrossRefGoogle Scholar
  57. 57.
    Lerouge, P, Roché, P, Faucher, C, Maillet, F, Truchet, G, Promé, J-C, Dénarié, J 1990Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal.Nature344781784PubMedCrossRefGoogle Scholar
  58. 58.
    Ligero, F, Lluch, C, Olivares, J 1986Evolution of ethylene from roots of Medicago sativa plants inoculated with Rhizobium meliloti.J Plant Physiol125361366Google Scholar
  59. 59.
    Long, SR 1996 Rhizobium symbiosis: Nod factors in perspective.Plant Cell818851898PubMedCrossRefGoogle Scholar
  60. 60.
    Lum, MR, Li, Y, LaRue, TA, David-Schwartz, R, Kapulnik, Y, Hirsch, AM 2002Investigation of four classes of non-nodulating white sweetclover (Melilotus alba annua Desr.) mutants and their responses to arbuscular-mycorrhizal fungi.Integ Comp Biol42295303CrossRefGoogle Scholar
  61. 61.
    Luyten, E, Vanderleyden, J 2000Survey of genes identified in Sinorhizobium meliloti spp., necessary for the development of an efficient symbiosis.Eur J Soil Biol36126CrossRefGoogle Scholar
  62. 62.
    Marschner, H 1995Mineral nutrition of higher plants.Academic PressLondon889Google Scholar
  63. 63.
    Martinez-Molina, E, Morales, VM, Hubbell, DH 1979Hydrolytic enzyme production by Rhizobium.Appl Environ Microbiol3811861188PubMedGoogle Scholar
  64. 64.
    Mathesius, U, Bayliss, C, Weinman, JJ,  et al. 1998Flavonoids synthesized in cortical cells during nodule initiation are early developmental markers in white clover.Mol Plant-Microbe Interact1112231232CrossRefGoogle Scholar
  65. 65.
    Minami, E, Kouchi, H, Cohn, JR, Ogawa, T, Stacey, G 1996Expression of the early nodulin, ENOD40, in soybean roots in response to various lipo-chitin signal molecules.Plant J102332PubMedCrossRefGoogle Scholar
  66. 66.
    Mosse, B, Hepper, CM 1975Vesicular-arbuscular mycorrhizal infections in root organ cultures.Physiol Plant Pathol5215223CrossRefGoogle Scholar
  67. 67.
    Moulin, L, Munive, A, Dreyfuss, B, Boivin-Masson, C 2001Nodulation of legumes by members of the beta-subclass of proteobacteria.Nature411948950PubMedCrossRefGoogle Scholar
  68. 68.
    Nagahashi, G, Douds Jr, DD 1997Appressorium formation by AM fungi on isolated cell walls of carrot roots.New Phytol136299304CrossRefGoogle Scholar
  69. 69.
    Newman, EI, Reddell, P 1987The distribution of mycorrhizas among families of vascular plants.New Phytol106745751CrossRefGoogle Scholar
  70. 70.
    Oldroyd, GED, Engstrom, EM, Long, SR 2001Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula.Plant Cell1318351849PubMedCrossRefGoogle Scholar
  71. 71.
    Parniske, M 2001Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease?Curr Opin Plant Biol3320328CrossRefGoogle Scholar
  72. 72.
    Penmetsa, RV, Cook, DR 1997A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont.Science275527530PubMedCrossRefGoogle Scholar
  73. 73.
    Perotto, S, Vandenbosch, KA, Brewin, NJ, Faccio, A, Knox, JP, Bonfante-Fasolo, P 1990Modifications of the host cell wall during root colonization by Rhizobium and VAM fungi.Nardon, PGianinazzi-Pearson, VGrenier, AMMargulis, MSmith, DC eds. Endocytobiology IVParisINRA Press114117Google Scholar
  74. 74.
    Phillips, DA, Dakora, FD, Sande, E, Joseph, CM, Zon, J 1994Synthesis, release and transmission of alfalfa signals to rhizobial symbionts.Plant Soil1616980CrossRefGoogle Scholar
  75. 75.
    Pozo, MJ, Cordier, C, Dumas-Gaudot, E, Gianinazzi, S, Barea, JM, Azcon-Aguilar, C 2002Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants.J Exp Bot53525534PubMedCrossRefGoogle Scholar
  76. 76.
    Provorov, NA, Borisov, AY, Tikhonovich, IA 2002Developmental genetics and evolution of symbiotic structures in nitrogen-fixing nodules and arbuscular mycorrhiza.J Theor Biol214215232PubMedCrossRefGoogle Scholar
  77. 77.
    Rausch, C, Daram, P, Brunner, S, Jansa, J, Laloi, M, Leggewie, G, Amrhein, N, Bucher, M 2001A phosphate transporter expressed in arbuscule-containing cells in potato.Nature414462466PubMedCrossRefGoogle Scholar
  78. 78.
    Read, DJ, Duckett, JG, Francis, R, Ligrone, R, Russel, A 2000Symbiotic fungal associations in “lower” land plants.Philos Trans Roy Soc Biol Sci355815831CrossRefGoogle Scholar
  79. 79.
    Recourt, K, van Tunen, AJ, Mur, LA, van Brussel, AAN, Lugtenberg, BJJ, Kijne, JW 1992Activation of flavonoid biosynthesis in roots of Vicia sativa subsp. nigra plants by inoculation with Rhizobium leguminosarum biovar viciae.Plant Mol Biol19411420PubMedCrossRefGoogle Scholar
  80. 80.
    Remy, W, Taylor, TN, Hass, H, Kerp, H 1994Four hundred-million-year-old vesicular arbuscular mycorrhizae.Proc Natl Acad Sci USA911184111843PubMedCrossRefGoogle Scholar
  81. 81.
    Roth, LE, Stacey, G 1989Bacterium release into host cells of nitrogen-fixing soybean nodules: the symbiosome membrane comes from three sources.Eur J Cell Biol491323PubMedGoogle Scholar
  82. 82.
    Sato, T, Fujikake, H, Ohtake, N, Sueyoshi, K, Takahashi, T, Sato, A, Ohyama, T 2002Effect of exogenous salicylic acid supply on nodule formation of hypernodulating mutant and wild type of soybean.Soil Sci Plant Nutr48413420Google Scholar
  83. 83.
    Senoo, K, Solaiman, MZ, Kawaguchi, M, Imaizumi-Anraku, H, Akao, S, Tanaka, A, Obata, H 2000Isolation of two different phenotypes of mycorrhizal mutants in the model legume plant Lotus japonicus after EMS-treatment.Plant Cell Physiol41726732PubMedGoogle Scholar
  84. 84.
    Shachar-Hill, Y, Pfeffer, PE, Douds, D, Osman, SF, Doner, LW, Ratcliffe, RG 1995Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek.Plant Physiol10829792995Google Scholar
  85. 85.
    Simon, L, Bousquet, J, Lévesque, RC, Lalonde, M 1993Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants.Nature3636769CrossRefGoogle Scholar
  86. 86.
    Smil, V 2001Enriching the earth. Fritz Haber, Carl Bosch, and the Transformation of World Food Production.The MIT PressCambridge, MA338Google Scholar
  87. 87.
    Smith, SE 1993Transport at the mycorrhizal interface.Mycorrhiza News513Google Scholar
  88. 88.
    Smith, SE, Gianinazzi-Pearson, V 1988Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants.Annu Rev Plant Physiol Plant Mol Biol39221244CrossRefGoogle Scholar
  89. 89.
    Solaiman, MDZ, Saito, M 1997Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry.New Phytol136533538CrossRefGoogle Scholar
  90. 90.
    Soltis, DE, Soltis, PS, Morgan, DR, Swensen, SM, Mullin, BC, Dowd, JM, Martin, PG 1995Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen-fixation in angiosperms.Proc Natl Acad Sci USA9226472651PubMedCrossRefGoogle Scholar
  91. 91.
    Spaink, HP, Sheeley, DM, van Brussel, AAN,  et al. 1991A novel highly saturated fatty acid moiety of lipooligosaccharide signals determines host specificity of Rhizobium.Nature354125130PubMedCrossRefGoogle Scholar
  92. 92.
    Stacey, G, Shibuya, N 1997Chitin recognition in rice and legumes.Plant Soil194161169CrossRefGoogle Scholar
  93. 93.
    Staehelin, C, Charon, C, Boiler, T, Crespi, M, Kondorosi, A 2001 Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules.Proc Natl Acad Sci USA981536615371PubMedCrossRefGoogle Scholar
  94. 94.
    Stracke, S, Kistner, C, Yoshida, S,  et al. 2002A plant receptor-like kinase required for both bacterial and fungal symbioses.Nature417959962PubMedCrossRefGoogle Scholar
  95. 95.
    Suganuma, N, Yamauchi, H, Yamamoto, K 1995Enhanced production of ethylene by soybean roots after inoculation with Bradyrhizobium japonicum.Plant Sci111163168CrossRefGoogle Scholar
  96. 96.
    Truchet, G, Roche, P, Lerouge, P,  et al. 1991Sulfated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa.Nature351670673CrossRefGoogle Scholar
  97. 97.
    Tyerman, SD, Whitehead, LF, Day, DA 1995A channel-like transporter for NH 4 + on the symbiotic interface of N2-fixing plants.Nature378629632CrossRefGoogle Scholar
  98. 98.
    Utrup, LJ, Gary, AJ, Norris, JH 1993Five nodulation mutants of white sweetclover (Melilotus alba Desr.) exhibit distinct phenotypes blocked at root hair curling, infection thread development, and nodule organogenesis.Plant Physiol103925932PubMedGoogle Scholar
  99. 99.
    Vance, CP 2001Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources.Plant Physiol127390397PubMedCrossRefGoogle Scholar
  100. 100.
    van Rhijn, P, Fang, Y, Galili, S,  et al. 1997Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved.Proc Natl Acad Sci USA9454675472PubMedCrossRefGoogle Scholar
  101. 101.
    van Workum, ., Wilbert, AT, van Brussel, AAN, Tak, T, Wijffelman, CA, Kijne, JW 1995Ethylene prevents nodulation of Vicia sativa ssp. nigra by exopolysaccharide-deficient mutants of Rhizobium leguminosarum bv. viciae.Mol Plant-Microbe Interact8278285CrossRefGoogle Scholar
  102. 102.
    Vierheilig, H, Alt, M, Mohr, U, Boller, T, Wiemken, A 1994Ethylene biosynthesis and activities of chitinase and ß-1,3-glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation with Glomus mosseae.J Plant Physiol143337343Google Scholar
  103. 103.
    Volpin, H, Elkind, Y, Okon, Y, Kapulnik, Y 1994A vesicular arbuscular mycorrhizal fungus Glomus intraradix induces a defence response in alfalfa roots.Plant Physiol104683689PubMedGoogle Scholar
  104. 104.
    Xie, ZP, Staehelin, C, Vierheilig, H,  et al. 1995Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans.Plant Physiol10815191525PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Molecular, Cell and Developmental Biology and Molecular Biology InstituteUniversity of California, Los Angeles, California 90095-1606USA

Personalised recommendations