Advertisement

Journal of Plant Growth Regulation

, Volume 21, Issue 4, pp 335–351 | Cite as

Root Endodermis and Exodermis: Structure, Function, and Responses to the Environment

  • Daryl E. Enstone
  • Carol A. Peterson
  • Fengshan Ma
Thematic Article

Abstract

Roots of virtually all vascular plants have an endodermis with a Casparian band, and the majority of angiosperm roots tested also have an exodermis with a Casparian band. Both the endodermis and exodermis may develop suberin lamellae and thick, tertiary walls. Each of these wall modifications has its own function(s). The endodermal Casparian band prevents the unimpeded movement of apoplastic substances into the stele and also prevents the backflow of ions that have moved into the stele symplastically and then were released into its apoplast. In roots with a mature exodermis, the barrier to apoplastic inflow of ions occurs near the root surface, but prevention of backflow of ions from the stele remains a function of the endodermis. The suberin lamellae protect against pathogen invasion and possibly root drying during times of stress. Tertiary walls of the endodermis and exodermis are believed to function in mechanical support of the root, but this idea remains to be tested. During stress, root growth rates decline, and the endodermis and exodermis develop closer to the root tip. In two cases, stress is known to induce the formation of an exodermis, and in several other cases to accelerate the development of both the exodermis and endodermis. The responses of the endodermis and exodermis to drought, exposure to moist air, flooding, salinity, ion deficiency, acidity, and mechanical impedance are discussed.

Keywords

Endodermis Exodermis Structure Drought Mycorrhizae Casparian bands Suberin lamellae 

Notes

Acknowledgements

We thank Dr. J.L. Seago Jr. (SUNY at Oswego) for helpful suggestions during the preparation of this manuscript.

References

  1. 1.
    Aloni, R, Enstone, DE, Peterson, CA 1998Indirect evidence for bulk water flow in root cortical cell walls of three dicotyledonous species.Planta20717CrossRefGoogle Scholar
  2. 2.
    Armstrong, J, Armstrong, W 2001Rice and Phragmites: effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere.Am J Bot8813591370CrossRefGoogle Scholar
  3. 3.
    Armstrong, W, Cousins, D, Armstrong, J, Turner, DW, Beckett, PM 2000Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Ann Bot86687703CrossRefGoogle Scholar
  4. 4.
    Barrowclough, DE, Peterson, CA 1994Effects of growing conditions and development of the underlying exodermis on the vitality of the onion root epidermis.Physiol Plant92343349CrossRefGoogle Scholar
  5. 5.
    Bernards, MA 2002Demystifying suberin.Can J Bot80227240CrossRefGoogle Scholar
  6. 6.
    Bonnett Jr, HT 1968The root endodermis: fine structure and function.J Cell Biol37199205CrossRefGoogle Scholar
  7. 7.
    Brundrett, MC, Enstone, DE, Peterson, CA 1988A berberine-aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue.Protoplasma146133142CrossRefGoogle Scholar
  8. 8.
    Brundrett, MC, Murase, G, Kendrick, B 1990Comparative anatomy of roots and mycorrhizae of common Ontario trees.Can J Bot68551578CrossRefGoogle Scholar
  9. 9.
    Bücking, H, Kuhn, A, Schröder, WH, Heyser, W 2002The fungal sheath of ectomycorrhizal pine roots: an apoplastic barrier for the entry of calcium, magnesium, and potassium into the root cortex?J Exp Bot5316591669PubMedCrossRefGoogle Scholar
  10. 10.
    Cholewa EM. (2000) Calcium transport and delivery to the xylem in onion (Allium cepa L.) roots. PhD Thesis, University of Waterloo, Waterloo, ON, Canada.Google Scholar
  11. 11.
    Clark, LH, Harris, WH 1981Observations on the root anatomy of rice (Oryza sativa L.Am J Bot68154161CrossRefGoogle Scholar
  12. 12.
    Clarkson, DT 1993Root structure and sites of ion uptake.Waisel, YEshel, AKafkafi, U eds. Plant roots: the hidden halfMarcel DekkerNew York417453Google Scholar
  13. 13.
    Clarkson, DT, Robards, AW, Sanderson, J 1971The tertiary endodermis in barley roots: fine structure in relation to radial transport of ions and water.Planta96292305CrossRefGoogle Scholar
  14. 14.
    Clarkson, DT, Robards, AW, Stephens, JE, Stark, M 1987Suberin lamellae in the hypodermis of maize (Zea mays) roots: development and factors affecting the permeability of hypodermal layers.Plant Cell Environ108393CrossRefGoogle Scholar
  15. 15.
    Clarkson, DT, Sanderson, J, Russell, RS 1968Ion uptake and root age.Nature220805806CrossRefGoogle Scholar
  16. 16.
    Colmer, TD, Gibberd, MR, Wiengweera, A, Tinh, TK 1998The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution.J Exp Bot4914311436CrossRefGoogle Scholar
  17. 117.
    Colmer, TD 2003Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots.Plant Cell Env261736CrossRefGoogle Scholar
  18. 17.
    Cruz, RT, Jordan, WR, Drew, MC 1992Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit.Plant Physiol99203212PubMedCrossRefGoogle Scholar
  19. 18.
    Damus, M, Peterson, RL, Enstone, DE, Peterson, CA 1997Modification of cortical cell walls in roots of seedless vascular plants.Bot Acta110190195Google Scholar
  20. 19.
    de Rufz de Lavison, J 1910Du mode de pénétration de quelques sels dans la plante vivante. Role de l'endoderme.Rev Gén Bot22225241Google Scholar
  21. 20.
    Drew, MC 1997Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia.Annu Rev Plant Physiol Plant Mol Biol48223250PubMedCrossRefGoogle Scholar
  22. 21.
    Drew, MC, He, C-J, Morgan, PW 2000Programmed cell death and aerenchyma formation in roots.Trends Plant Sci5123127PubMedCrossRefGoogle Scholar
  23. 22.
    Enstone, DE, Peterson, CA 1992The apoplastic permeability of root apices.Can J Bot7015021512Google Scholar
  24. 23.
    Enstone, DE, Peterson, CA 1997Suberin deposition and band plasmolysis in the corn (Zea mays L.) root exodermis.Can J Bot7511881199CrossRefGoogle Scholar
  25. 24.
    Enstone, DE, Peterson, CA 1998Effects of exposure to humid air on epidermal vitality and suberin deposition in maize (Zea mays L.) roots.Plant Cell Environ21837844CrossRefGoogle Scholar
  26. 25.
    Esau, K 1965Plant anatomy, 2nd edition.John Wiley and SonsNew York767Google Scholar
  27. 26.
    Esnault, A-L, Masuhara, G, McGee, PA 1994Involvement of exodermal passage cells in mycorrhizal infection of some orchids.Mycol Red98672676CrossRefGoogle Scholar
  28. 27.
    Ferguson, IB, Clarkson, DT 1975Ion transport and endodermal suberization in the roots of Zea mays. New Phytol756979CrossRefGoogle Scholar
  29. 28.
    Ferguson, IB, Clarkson, DT 1976aIon uptake in relation to the development of a root hypodermis.New Phytol771114CrossRefGoogle Scholar
  30. 29.
    Ferguson, IB, Clarkson, DT 1976bSimultaneous uptake and translocation of magnesium and calcium in barley (Hordeum vulgare L.) roots.Planta128267269CrossRefGoogle Scholar
  31. 30.
    Gallaud, I 1905Études sur les mycorhizes endotrophes.Rev Gén Bot7518Google Scholar
  32. 31.
    Gibbs, J, Turner, DW, Armstrong, W, Sivasithamparam, K, Greenway, H 1998Response to oxygen deficiency in primary maize roots. II. Development of oxygen deficiency in the stele has limited short-term impact on radial hydraulic conductivity.Aust J Plant Physiol25759763CrossRefGoogle Scholar
  33. 32.
    Grunwaldt, G, Ehwald, R, Pietzsch, W, Göring, H 1979A special role of the rhizodermis in nutrient uptake by plant roots.Biochem Physiol Pflanzen174831837Google Scholar
  34. 33.
    Gunawardena, AHLAN, Pearce, DM, Jackson, MB, Hawes, CR, Evans, DE 2001Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.).Planta212205214PubMedCrossRefGoogle Scholar
  35. 34.
    Gunning, BES, Hughes, JE 1976Quantitative assessment of symplastic transport of prenectar into the trichomes of Abutilon nectaries.Aust J Plant Physiol3619637CrossRefGoogle Scholar
  36. 35.
    Harrison-Murray, RS, Clarkson, DT 1973Relationships between structural development and the absorption of ions by the root system of Cucurbita pepo. Planta114116CrossRefGoogle Scholar
  37. 36.
    Hartung, W, Leport, L, Ratcliff, RG, Sauter, A, Duda, R, Turner, NC 2002Abscisic acid concentration, root pH and anatomy do not explain growth differences of chickpea (Cicer arietinum L.) and lupin (Lupinus angustifolius L.) on acid and alkaline soils.Plant Soil240191199CrossRefGoogle Scholar
  38. 37.
    Hose, E, Clarkson, DT, Steudle, E, Schreiber, L, Hartung, W 2001The exodermis: a variable apoplastic barrier.J Exp Bot5222452264PubMedCrossRefGoogle Scholar
  39. 38.
    Imhof, S, Weber, HC 1997Root anatomy and mycotrophy (AM) of the achlorophyllous Voyria truncata (Standley) Standley & Steyermark (Gentianaceae).Bot Acta110127134Google Scholar
  40. 39.
    Jacobsen, KR, Rousseau, RA, Denison, RF 1998Tracing the path of oxygen into birdsfoot trefoil and alfalfa nodules using iodine vapor.Bot Acta111193203Google Scholar
  41. 40.
    Jupp, AP, Newman, EI 1987Morphological and anatomical effects of severe drought on the roots of Lolium perenne L.New Phytol105393402CrossRefGoogle Scholar
  42. 41.
    Kamula, SA, Peterson, CA, Mayfield, CI 1994The plasmalemma surface area exposed to the soil solution is markedly reduced by maturation of the exodermis and death of the epidermis in onion roots.Plant Cell Environ1711831193CrossRefGoogle Scholar
  43. 42.
    Kochian, LV, Lucas, WJ 1983Potassium transport in corn roots. II. The significance of the root periphery.Plant Physiol73208215PubMedCrossRefGoogle Scholar
  44. 43.
    Kroemer, K 1903Wurzelhaut, Hypodermis und Endodermis der Angiospermenwurzeln.Bibl Bot12159Google Scholar
  45. 44.
    Lehmann, H, Stelzer, R, Holzamer, S, Kunz, U, Gierth, M 2000Analytical electron microscopical investigations on the apoplastic pathways of lanthanum transport in barley roots.Planta211816822PubMedCrossRefGoogle Scholar
  46. 45.
    Lüttge, U, Higinbotham, N 1979Transport in plants.Springer-VerlagNew York468Google Scholar
  47. 46.
    Ma F (2000) Plasmodesmata and symplastic transport in onion (Allium cepa L.) roots. PhD Thesis, University of Waterloo, Waterloo, ON, Canada.Google Scholar
  48. 47.
    Ma, F, Peterson, CA 2000Plasmodesmata in onion (Allium cepa L.) roots: a study enabled by improved fixation and embedding techniques.Protoplasma211103115CrossRefGoogle Scholar
  49. 48.
    Ma, F, Peterson, CA 2001Development of cell wall modifications in the endodermis and exodermis of Allium cepa roots.Can J Bot79621634CrossRefGoogle Scholar
  50. 49.
    Massicotte, HB, Peterson, RL, Ackerley, CA, Ashford, AE 1987Ontogeny of Eucalyptus pilularis–Pisolithus tinctorium ectomycorrhizae. II. Transmission electron microscopy.Can J Bot6519401947CrossRefGoogle Scholar
  51. 50.
    Matsubara, Y, Uetake, Y, Peterson, RL 1999Entry and colonization of Asparagus officinalis roots by arbuscular mycorrhizal fungi with emphasis on changes in host microtubules.Can J Bot7711591167CrossRefGoogle Scholar
  52. 51.
    McCully, ME 1999Roots in soil: unearthing the complexities of roots and their rhizospheres.Annu Rev Plant Physiol Plant Mol Biol50695718PubMedCrossRefGoogle Scholar
  53. 52.
    McDonald, MP, Galwey, NW, Colmer, TD 2001Waterlogging tolerance in the tribe Triticeae: the adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen loss.Plant Cell Environ24585596CrossRefGoogle Scholar
  54. 53.
    McDonald, MP, Galwey, NW, Colmer, TD 2002Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species.Plant Cell Environ25441451CrossRefGoogle Scholar
  55. 54.
    McKenzie, BE, Peterson, CA 1995Root browning in Pinus banksiana Lamb. and Eucalyptus pilularis Sm. 1. Anatomy and permeability of the white and tannin zones.Bot Acta108127137Google Scholar
  56. 55.
    Moon, GJ, Clough, BF, Peterson, CA, Allaway, WG 1986Apoplastic and symplastic pathways in Avicennia marina (Forsk.) Vierh. roots revealed by fluorescent tracer dyes.Aust J Plant Physiol13637648CrossRefGoogle Scholar
  57. 56.
    Nagahashi, G, Thompson, WW, Leonard, RT 1974The Casparian strip as a barrier to the movement of lanthanum in corn roots.Science183670671PubMedCrossRefGoogle Scholar
  58. 57.
    Nilsen, ET, Orcutt, DM 1996The physiology of plants under stress. Abiotic factors.John Wiley & Sons, Inc.New York689Google Scholar
  59. 58.
    Noldt, G, Bauch, J, Koch, G, Schmitt, U 2001Fine roots of Carapa guianensis Aubl. and Swietenia macrophylla King: cell structure and adaptation to the dry season in Central Amazônia.J Appl Bot Angew Bot75152158Google Scholar
  60. 59.
    North, GB, Nobel, PS 1996Radial hydraulic conductivity of individual root tissues of Opuntia ficus-indica (L.) Miller as soil moisture varies.Ann Bot77133142CrossRefGoogle Scholar
  61. 60.
    North, GB, Nobel, PS 1998Water uptake and structural plasticity along roots of a desert succulent during prolonged drought.Plant Cell Environ21705713CrossRefGoogle Scholar
  62. 61.
    North, GB, Nobel, PS 2000Heterogeneity in water availability alters cellular development and hydraulic conductivity along roots of a desert succulent.Ann Bot85247255CrossRefGoogle Scholar
  63. 62.
    Olesen, P 1978Studies on the physiological sheaths in roots. I. Ultrastructure of the exodermis in Hoya carnosa L.Protoplasma94325340CrossRefGoogle Scholar
  64. 63.
    Perumalla, CJ, Peterson, CA 1986Deposition of Casparian bands and suberin lamellae in the exodermis and endodermis of young corn and onion roots.Can J Bot6418731878CrossRefGoogle Scholar
  65. 64.
    Perumalla, CJ, Peterson, CA, Enstone, DE 1990A survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermis.Bot J Linn Soc10393112CrossRefGoogle Scholar
  66. 65.
    Peterson, CA 1987The exodermal Casparian band of onion blocks apoplastic movement of sulphate ions.J Exp Bot3220682081CrossRefGoogle Scholar
  67. 66.
    Peterson, CA, Emanuel, ME, Humphreys, GB 1981Pathway of movement of apoplastic fluorescent dye tracers through the endodermis at the site of secondary root formation in corn (Zea mays) and broad bean (Vicia faba).Can J Bot59618625CrossRefGoogle Scholar
  68. 67.
    Peterson, CA, Emanuel, ME, Wilson, C 1982Identification of a Casparian band in the hypodermis of onion and corn roots.Can J Bot6015291535Google Scholar
  69. 68.
    Peterson, CA, Murrmann, M, Steudle, E 1993Location of the major barriers to water and ion movement in young roots of Zea mays L.Planta190127136CrossRefGoogle Scholar
  70. 69.
    Peterson, CA, Perumalla, CJ 1990A survey of angiosperm species to detect hypodermal Casparian bands. II. Roots with a multiseriate hypodermis or epidermis.Bot J Linn Soc103113125CrossRefGoogle Scholar
  71. 70.
    Peterson, CA, Peterson, RL, Robards, AW 1978A correlated histochemical and ultrastructural study of the epidermis and hypodermis of onion roots.Protoplasma96121CrossRefGoogle Scholar
  72. 71.
    Peterson, CA, Waite, JL 1996The effect of suberin lamellae on the vitality and symplasmic permeability of the onion root exodermis.Can J Bot7412201226CrossRefGoogle Scholar
  73. 72.
    Peyrano, G, Taleisnik, E, Quiroga, M, de Forchetti, SM, Tigier, H 1997Salinity effects on hydraulic conductance, lignin content and peroxidase activity in tomato roots.Plant Physiol Biochem35387393Google Scholar
  74. 73.
    Pozuelo, JM, Espelie, KE, Kolattukudy, PE 1984Magnesium deficiency results in increased suberization in endodermis and hypodermis of corn roots.Plant Physiol74256260PubMedCrossRefGoogle Scholar
  75. 74.
    Priestley, JH, North, EE 1922Physiological studies in plant anatomy. III. The structure of the endodermis in relation to its function.New Phytol218139Google Scholar
  76. 75.
    Reinhardt, DH, Rost, TL 1995aPrimary and lateral root development of dark-grown and light-grown cotton seedlings under salinity stress.Bot Acta108457465Google Scholar
  77. 76.
    Reinhardt, DH, Rost, TL 1995bSalinity accelerates endodermal development and induces an exodermis in cotton seedling roots.Environ Exper Bot35563574CrossRefGoogle Scholar
  78. 77.
    Richards, D, Considine, JA 1981Suberization and browning of grapevine roots.Brouwer, R eds. Structure and function of plant roots.Martinus Nijhoff/Dr. W. Junk Publishers The Hague/Boston/London111115Google Scholar
  79. 78.
    Robards, AW, Jackson, M, Clarkson, DT, Sanderson, J 1973The structure of barley roots in relation to the transport of ions into the stele.Protoplasma77291311CrossRefGoogle Scholar
  80. 79.
    Robards, AW, Robb, ME 1972Uptake and binding of uranyl ions by barley roots.Science178980982PubMedCrossRefGoogle Scholar
  81. 80.
    Sattelmacher, B 2001The apoplast and its significance for plant mineral nutrition.New Phytol149167192CrossRefGoogle Scholar
  82. 81.
    Schreiber, L 1996Chemical composition of Casparian strips isolated from Clivia miniata Reg. roots: evidence for lignin.Planta199596601CrossRefGoogle Scholar
  83. 82.
    Schreiber, L, Breiner, H-W, Riederer, M, Duggelin, M 1994The Casparian strip of Clivia miniata Reg. roots: isolation, fine structure and chemical nature.Bot Acta107353361Google Scholar
  84. 83.
    Schreiber, L, Hartmann, K, Skrabs, M, Zeier, J 1999Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls.J Exp Bot5012671280CrossRefGoogle Scholar
  85. 84.
    Scott, MG, Peterson, RL 1979The endodermis in Ranunculus acris. I. Structure and ontogeny.Can J Bot5710401062CrossRefGoogle Scholar
  86. 85.
    Seago, Jr JL 2002The root cortex of the Nymphaeceae, Cabombaceae, and Nelumbonaceae.J Torrey Bot Soc12919CrossRefGoogle Scholar
  87. 86.
    Seago Jr, JL, Peterson, CA, Enstone, DE 1999aCortical ontogeny in roots of the aquatic plant, Hydrocharis morsus-ranae L.Can J Bot77113121CrossRefGoogle Scholar
  88. 87.
    Seago Jr, JL, Peterson, CA, Enstone, DE 2000aCortical development in roots of the aquatic plant Pontederia cordata (Pontederiaceae).Am J Bot8711161127CrossRefGoogle Scholar
  89. 88.
    Seago Jr, JL, Peterson, CA, Enstone, DE, Scholey, CA 1999bDevelopment of the endodermis and hypodermis of Typha glauca Godr. and Typha angustifolia L. roots.Can J Bot77122134CrossRefGoogle Scholar
  90. 89.
    Seago Jr, JL, Peterson, CA, Kinsley, LJ, Broderick, J 2000bDevelopment and structure of the root cortex in Caltha palustris L. and Nymphaea odorata Ait.Ann Bot86631640CrossRefGoogle Scholar
  91. 90.
    Shannon, MC, Grieve, CM, Francois, LE 1994Whole-plant response to salinity.Wilkenson, RE eds. Plant-environment interactions.Marcel DekkerNew York199244Google Scholar
  92. 91.
    Singh, C, Jacobson, L 1977The radial and longitudinal path of ion movement in roots.Physiol Plant415964CrossRefGoogle Scholar
  93. 92.
    Smith, SE, Long, CM, Smith, FA 1989Infection of roots with a dimorphic hypodermis: possible effects on solute uptake.Agric Ecosyst Environ29403407CrossRefGoogle Scholar
  94. 93.
    Smith, SE, Read, DJ 1977Mycorrhizal symbiosis.Academic PressNew York605Google Scholar
  95. 94.
    Soukup, A, Votrubová, O, Čížková, H 2002Development of anatomical structure of roots of Phragmites australis. New Phytol153277287CrossRefGoogle Scholar
  96. 95.
    Spaeth, SC, Cortes, PM 1995Root cortex death and subsequent initiation and growth of lateral roots from bare steles of chickpeas.Can J Bot73253261CrossRefGoogle Scholar
  97. 96.
    Stasovski, E, Peterson, CA 1991The effects of drought and subsequent rehydration on the structure and vitality of Zea mays seedling roots.Can J Bot6911701178CrossRefGoogle Scholar
  98. 97.
    Stasovski, E, Peterson, CA 1993Effects of drought and subsequent rehydration on the structure, vitality, and permeability of Allium cepa adventitious roots.Can J Bot71700707CrossRefGoogle Scholar
  99. 98.
    Taiz, L, Zeiger, E 1998Plant physiology.Sinauer AssociatesMass.792Google Scholar
  100. 99.
    Taleisnik, E, Peyrano, G, Córdoba, A, Arias, C 1999Water retention capacity in root segments differing in the degree of exodermis development.Ann Bot831927CrossRefGoogle Scholar
  101. 100.
    Tyree, MT, Sperry, JS 1989Vulnerability of xylem to cavitation and embolism.Ann Rev Plant Physiol Plant Mol Biol401938CrossRefGoogle Scholar
  102. 101.
    Van Iren, F, Boers-van der Sluijs, P 1980Symplasmic and apoplasmic radial ion transport in plant roots. Cortical plasmalemmas lose absorption capacity during differentiation.Planta148130137CrossRefGoogle Scholar
  103. 102.
    Visser, EJW, Colmer, TD, Blom, CWPM, Voesenek, LACJ 2000Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma.Plant Cell Environ2312371245CrossRefGoogle Scholar
  104. 103.
    Voesenek, LACJ, Armstrong, W, Bögemann, GM, McDonald, MP, Colmer, TD 1999A lack of aerenchyma and high rates of radial oxygen loss from the root base contribute to the waterlogging intolerance of Brassica napus. Aust J Plant Physiol268793CrossRefGoogle Scholar
  105. 104.
    Von Guttenberg, H 1968Der primäre Bau der Angiospermenwurzeln.Linsbauer, K eds. Handbuch der Pflanzenanatomie, Vol. 8.Gebrüder BorntraegerBerlin141159Google Scholar
  106. 105.
    Walker, RR, Sedgley, M, Blesing, MA, Douglas, TJ 1984Anatomy, ultrastructure and assimilate concentrations in roots of Citrus genotypes differing in ability for salt exclusion.J Exp Bot3514811494CrossRefGoogle Scholar
  107. 106.
    Wall, LG 2000The actinorhizal symbiosis.J Plant Growth Reg19167182Google Scholar
  108. 107.
    Wang, XL, McCully, ME, Canny, MJ 1995Branch roots of Zea. V. Structural features that may influence water and nutrient transport.Bot Acta108209219Google Scholar
  109. 108.
    Watt, M, van der Weele, CM, McCully, ME, Canny, MJ 1996Effects of local variations in soil moisture on hydrophobic deposits and dye diffusion in corn roots.Bot Acta109492501Google Scholar
  110. 109.
    Wilcox, H 1962Growth studies of the root of incense cedar, Libocedrus decurrens. I. The origin and development of primary tissues.Am J Bot49221236CrossRefGoogle Scholar
  111. 110.
    Wilson, AJ, Robards, AW 1978The ultrastructural development of mechanically impeded barley roots. Effects on the endodermis and pericycle.Protoplasma95255265CrossRefGoogle Scholar
  112. 111.
    Wilson, AJ, Robards, AW 1980Observations of the pattern of secondary wall development in the hypodermis of onion (Allium cepa) roots.Protoplasma104149156CrossRefGoogle Scholar
  113. 112.
    Zeier, J, Goll, A, Yokoyama, M, Karahara, I, Schreiber, L 1999aStructure and chemical composition of endodermal and rhizodermal/hypodermal walls of several species.Plant Cell Environ22271279CrossRefGoogle Scholar
  114. 113.
    Zeier, J, Ruel, K, Ryser, U, Schreiber, L 1999bChemical analysis and immunolocalisation of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize (Zea mays L.) primary roots.Planta209112CrossRefGoogle Scholar
  115. 114.
    Zeier, J, Schreiber, L 1998Comparative investigation of primary and tertiary endodermal cell walls isolated from the roots of five monocotyledoneous species: chemical composition in relation to fine structure.Planta206349361CrossRefGoogle Scholar
  116. 115.
    Zimmermann, HM, Hartmann, K, Schreiber, L, Steudle, E 2000Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.).Planta210302311PubMedCrossRefGoogle Scholar
  117. 116.
    Zimmermann, HM, Steudle, E 1998Apoplastic transport across young maize roots: effect of the exodermis.Planta206719CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Daryl E. Enstone
    • 1
  • Carol A. Peterson
    • 1
  • Fengshan Ma
    • 1
  1. 1.Department of BiologyUniversity of Waterloo, Waterloo ON N2L 3G1Canada

Personalised recommendations