Advertisement

Marine bacterial surfactin CS30-2 induced necrosis-like cell death in Huh7.5 liver cancer cells

  • Shengnan Zhou
  • Ge Liu
  • Shimei WuEmail author
Article
  • 1 Downloads

Abstract

Marine bacterial strain Bacillus sp. CS30 exhibited high anticancer activity against Huh7.5 human liver cancer. We purified the corresponding anticancer agent by sequential acidic precipitation, methanol extraction, Sephadex LH-20 chromatography, and reversed phase high-performance liquid chromatography (RP-HPLC), then analyzed it in mass spectrometry. Based on the results of purification and mass spectrometry, we deduced that the anticancer agent was the same component as our previously purified antifungal agent surfactin CS30-2. However, to the best of our knowledge, this is the first report on the surfactin possessing both antifungal and anticancer activities. Surfactin CS30-2 was demonstrated to exhibit high anticancer activity in a dose-dependent manner against Huh7.5 liver cancer cells. Further investigation showed that surfactin CS30-2 induced the increased generation of reactive oxygen species (ROS) and severe disruption of cell membrane, thus leading to cell death. However, unlike previously reported surfactins, surfactin CS30-2 caused cancer cell death via necrosis instead of apoptosis.

Keyword

Bacillus surfactin anticancer activity reactive oxygen species (ROS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barzkar N, Tamadoni Jahromi S, Poorsaheli H B, Vianello F. 2019. Metabolites from marine microorganisms, micro, and macroalgae: immense scope for pharmacology. Mar Drugs, 17 (8): 464.CrossRefGoogle Scholar
  2. Cadenas E, Davies K J A. 2000. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med., 29 (3–4): 222–230.Google Scholar
  3. Cao X H, Wang A H, Wang C L, Mao D Z, Lu M F, Cui Y Q, Jiao R Z. 2010. Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem - Biol Interact., 183 (3): 357–362.CrossRefGoogle Scholar
  4. Demain A L, Sanchez S. 2009. Microbial drug discovery: 80 years of progress. J. Antibiot., 62 (1): 5–16.CrossRefGoogle Scholar
  5. Elmore S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 35 (4): 495–516. Fei F R, Hu R Y, Gong W W, Pan J, Wang M. 2019. Analysis of mortality and survival rate of liver cancer in Zhejiang Province in China: a general population-based study. Can J. Gastroenterol. Hepatol., 2019: 1074286.CrossRefGoogle Scholar
  6. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D M, Forman D, Bray F. 2015. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer136 (5): E359–86.CrossRefGoogle Scholar
  7. Gudiña E J, Teixeira J A, Rodrigues L R. 2016. Biosurfactants produced by marine microorganisms with therapeutic applications. Mar. Drugs, 14 (2): E38.CrossRefGoogle Scholar
  8. Hajare S N, Subramanian M, Gautam S, Sharma A. 2013. Induction of apoptosis in human cancer cells by a Bacillus lipopeptide bacillomycin D. Biochimie95 (9): 1722–1731.Google Scholar
  9. Hermawan A, Putri H. 2018. Current report of natural product development against breast cancer stem cells. Int J Biochem. Cell Biol., 104: 114–132.CrossRefGoogle Scholar
  10. Iwasaki A, Ohno O, Katsuyama S, Morita M, Sasazawa Y, Dan S, Simizu S, Yamori T, Suenaga K. 2015. Identification of a molecular target of kurahyne, an apoptosis-inducing lipopeptide from marine cyanobacterial assemblages. Bioorg Med Chem Lett., 25 (22): 5295–5298,  https://doi.org/10.1016/j.bmcl.2015.09.044.CrossRefGoogle Scholar
  11. Kuang S, Liu G, Cao R B, Zhang L L, Yu Q, Sun C M. 2017. Mansouramycin C kills cancer cells through reactive oxygen species production mediated by opening of mitochondrial permeability transition pore. Oncotarget8 (61): 104 057-104 071.CrossRefGoogle Scholar
  12. Liu G, Kuang S, Cao R B, Wang J, Peng Q C, Sun C M. 2019. Sorafenib kills liver cancer cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids via the ATP-AMPK-mTOR-SREBP1 signaling pathway. FASEB J., 33 (9): 10 089–10103.Google Scholar
  13. Liu G, Wang K, Kuang S, Cao R B, Bao L, Liu R, Liu H W, Sun C M. 2018. The natural compound GL22, isolated from Ganoderma mushrooms, suppresses tumor growth by altering lipid metabolism and triggering cell death. Cell Death Dis., 9 (6): 689,  https://doi.org/10.1038/s41419-018-0731-6.Google Scholar
  14. Ni C H, Yu C S, Lu H F, Yang J S, Huang H Y, Chen P Y, Wu S H, Ip S W, Chiang S Y, Lin J G, Chung J G. 2014. Chrysophanol-induced cell death (Necrosis) in human lung cancer A549 cells is mediated through increasing reactive oxygen species and decreasing the level of mitochondrial membrane potential. Environ Toxicol., 29 (7): 740–749.CrossRefGoogle Scholar
  15. Obtel M, Lyoussi B, Tachfouti N, Pelissier S M, Nejjari C. 2015. Using surveillance data to understand cancer trends: an overview in Morocco. Arch. Public Health, 73: 45.CrossRefGoogle Scholar
  16. Ouyang L, Shi Z, Zhao S, Wang F T, Zhou T T, Liu B, Bao J K. 2012. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif., 45 (6): 487–498.CrossRefGoogle Scholar
  17. Park S Y, Kim J H, Lee Y J, Lee S J, Kim Y. 2013. Surfactin suppresses TPA-induced breast cancer cell invasion through the inhibition of MMP-9 expression. Int J Oncol., 42 (1): 287–296.CrossRefGoogle Scholar
  18. Schinke C, Martins T, Queiroz S C N, Melo I S, Reyes F G R. 2017. Antibacterial compounds from marine bacteria, 2010-2015. J. Nat. Prod., 80 (4): 1215–1228.CrossRefGoogle Scholar
  19. Sia D, Villanueva A, Friedman S L, Llovet J M. 2017. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology, 152 (4): 745–761.CrossRefGoogle Scholar
  20. Torre L A, Islami F, Siegel R L, Ward E M, Jemal A. 2017. Global cancer in women: burden and trends. Cancer Epidemiol. Biomarkers Prev., 26 (4): 444–457.CrossRefGoogle Scholar
  21. Valko M, Leibfritz D, Moncol J, Cronin M T D, Mazur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem. Cell Biol., 39 (1): 44–84.CrossRefGoogle Scholar
  22. Wang C L, Liu C, Niu L L, Wang L R, Hou L H, Cao X H. 2013. Surfactin-induced apoptosis through ROS-ERS-Ca2+ -ERK pathways in HepG2 cells. Cell Biochem Biophys., 67 (3): 1433–1439.CrossRefGoogle Scholar
  23. Wu S M, Liu G, Zhou S N, Sha Z X, Sun C M. 2019. Characterization of antifungal lipopeptide biosurfactants produced by marine bacterium Bacillus sp. CS30. Mar Drugs, 17 (4): 199,  https://doi.org/10.3390/md17040199.CrossRefGoogle Scholar
  24. Wu Y S, Ngai S C, Goh B H, Chan K G, Lee L H, Chuah L H. 2017. Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery. Front Pharmacol., 8: 761,  https://doi.org/10.3389/fphar.2017.00761.CrossRefGoogle Scholar
  25. Xiu P Y, Liu R, Zhang D C, Sun C M. 2017. Pumilacidin-like lipopeptides derived from marine bacterium Bacillus sp. Strain 176 suppress the motility of Vibrio alginolyticus Appl Environ Microbiol., 83(12): e00450–17,  https://doi.org/10.1128/AEM.00450-17.Google Scholar
  26. Yang H, Li X, Li X, Yu H M, Shen Z Y. 2015. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Anal Bioanal Chem., 407 (9): 2529-2542.CrossRefGoogle Scholar
  27. Zhang Y X, Yu P F, Gao Z M, Yuan J, Zhang Z. 2017. Caffeic acid n-butyl ester-triggered necrosis-like cell death in lung cancer cell line A549 is prompted by ROS mediated alterations in mitochondrial membrane potential. Eur Rev. Med. Pharmacol. Sci., 21 (7): 1665–1671.Google Scholar
  28. Zhao H B, Shao D Y, Jiang C M, Shi J L, Li Q, Huang Q S, Rajoka M S R, Yang H, Jin M L. 2017. Biological activity of lipopeptides from Bacillus Appl Microbiol Biotechnol., 101 (15): 5951–5960,  https://doi.org/10.1007/s00253-017-8396-0.CrossRefGoogle Scholar
  29. Zhong H Q, Xiao M Q, Zarkovic K, Zhu M J, Sa R N, Lu J H, Tao Y Z, Chen Q, Xia L, Cheng S Q, Waeg G, Zarkovic N, Yin H Y. 2017. Mitochondrial control of apoptosis through modulation of cardiolipin oxidation in hepatocellular carcinoma: a novel link between oxidative stress and cancer. Free Radical Biol Med., 102: 67–76,  https://doi.org/10.1016/j.freeradbiomed.2016.10.494.CrossRefGoogle Scholar
  30. Zong W X, Ditsworth D, Bauer D E, Wang Z Q, Thompson C B. 2004. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev., 18 (11): 1272–1282.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Life SciencesQingdao UniversityQingdaoChina
  2. 2.Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  3. 3.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations