Skip to main content

Advertisement

Log in

An enhanced underwater camera apparatus for seabed observation of megabenthic epifauna in the northern Yellow Sea

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Seabed photographing has been applied with various underwater camera apparatuses (UCAs) for observations of megabenthic epifauna, which reveals more details than traditional sampling tools do. In this study, we improved a UCA named a towed underwater video-camera system (TUV system) with image processing software for seabed photographing in coastal areas up to 100 m. In May 2017, the TUV system was tested at 4 stations in the Zhangzi Island marine area in the northern Yellow Sea to investigate local megabenthic epifauna, especially brittle stars. At each station, more than 500 good seabed photographs each in area of 0.155 0 m2 were obtained in just 10 min. Almost all of the epifauna larger than 1 mm could be identified from the photographs, including echinoderms, bivalves, cnidarians, and crustaceans. Three dominant brittle stars (Ophiopholis mirabilis, Ophiura sarsii vadicola, and Stegophiura sladeni) were spotted, and their abundance, disc diameter, cluster size, and coverage area were calculated and analyzed from the seabed photographs. The results show that the TUV system could be applied in coastal waters of hard sandy bottoms and could be used for quantitative investigations of megabenthic epifauna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Backus R H. 1966. The “Pinger” as an aid in deep trawling. ICES Journal of Marine Science30 (2): 270–277, https://doi.org/10.1093/icesjms/30.2.270.

    Article  Google Scholar 

  • Barton O. 1935. Five hundred fathorms deep. Natural History Magazine, 35: 144–145.

    Google Scholar 

  • Bergmann M, Langwald N, Ontrup J, Soltwedel T, Schewe I, Klages M, Nattkemper T W. 2011. Megafaunal assemblages from two shelf stations west of Svalbard. Marine Biology Research7 (6): 525–539, https://doi.org/10.1080/17451000.2010.535834.

    Article  Google Scholar 

  • Bluhm H. 1993. Effects of deepsea mining for manganese nodules on the abyssal megabenthic community. In: Offshore Technology Conference. Offshore Technology Conference, Houston, Texas. https://doi.org/10.4043/7134-MS.

    Google Scholar 

  • Bluhm H. 2001. Re-establishment of an abyssal megabenthic community after experimental physical disturbance of the seafloor. Deep Sea Research Part II: Topical Studies in Oceanography48 (17–18): 3 841–3 868, https://doi.org/10.1016/S0967-0645(01)00070-4.

    Article  Google Scholar 

  • Boutan L. 1893. Memoire sur la photographie sous-marine. Archives of Zoological Experimental Genetics Notes Review, 21: 281–324.

    Google Scholar 

  • Bowden D A, Schiaparelli S, Clark M R, Rickard G J. 2011. A lost world? Archaic crinoid-dominated assemblages on an Antarctic seamount. Deep Sea Research Part II: Topical Studies in Oceanography58 (1–2): 119–127, https://doi.org/10.1016/j.dsr2.2010.09.006.

    Article  Google Scholar 

  • Edgerton H E, Cousteau J Y. 1959. Underwater camera positioning by sonar. Review of Scientific Instruments30 (12): 1 125–1 126, https://doi.org/10.1063/1.1716461.

    Article  Google Scholar 

  • Edgerton H E, Udintsev G. 1973. Rift valley observations by camera and pinger. Deep SeaResearchandOceanographic Abstracts20 (7): 669–670, https://doi.org/10.1016/0011-7471(73)90035-1.

    Article  Google Scholar 

  • Ewing M, Vine A, Worzel J L. 1946. Photography of the ocean bottom. Journal of the Optical Society of America36 (6): 307–307, https://doi.org/10.1364/JOSA.36.000307.

    Article  Google Scholar 

  • Fodrie F J, Levin L A, Rathburn A E. 2009. High densities and depth-associated changes of epibenthic megafauna along the Aleutian margin from 2000–4200 m. Journal of the Marine Biological Association of the United Kingdom89 (8): 1 517–1 527, https://doi.org/10.1017/S0025315409000903.

    Article  Google Scholar 

  • Fornari D J, Group T C. 2003. A new deep-sea towed digital camera and multi-rock coring system. Eos Transactions American Geophysical Union84 (8): 69–73, https://doi.org/10.1029/2003EO080001.

    Article  Google Scholar 

  • Fujita T, Ohta S, Oji T. 1987. Photographic observations of the stalked crinoid Metacrinus rotundus carpenter in Suruga Bay, central Japan. Journal of the Oceanographical Society of Japan43 (6): 333–343, https://doi.org/10.1007/BF02109286.

    Article  Google Scholar 

  • Fujita T, Ohta S. 1988. Photographic observations of the life style of a deep-sea ophiuroid Asteronyx loveni (Echinodermata). Deep Sea Research Part A Oceanographic Research Papers35 (12): 2 029–2 043, https://doi.org/10.1016/0198-0149(88)90123-9.

    Article  Google Scholar 

  • Fujita T, Ohta S. 1989. Spatial structure within a dense bed of the brittle star Ophiura sarsi(Ophiuroidea: Echinodermata) in the bathyal zone off otsuchi, Northeastern Japan. Journal of Oceanography45 (5): 289–300, https://doi.org/10.1007/BF02123483.

    Article  Google Scholar 

  • Gordon D C, Kenchington E L R, Gilkinson K D, Mckeown D L, Steeves G, Chin-Yee M, Vass W P, Bentham K, Boudreau P R. 2000. Canadian imaging and sampling technology for studying marine benthic habitat and biological communities. In: Proceedings of the ICES 2000 Annual Science Conference. Bruges, Belgium.

    Google Scholar 

  • Harvey E N. 1939. Deep-sea photography. Science90 (2330): 187, https://doi.org/10.1126/science.90.2330.187.

    Article  Google Scholar 

  • Hecker B. 1990. Variation in megafaunal assemblages on the continental margin south of New England. Deep Sea Research Part A Oceanographic Research Papers37 (1): 37–57, https://doi.org/10.1016/0198-0149(90)90028-T.

    Article  Google Scholar 

  • Hersey J B. 1959. Acoustically monitored bottom coring. Deep SeaResearch6 (2): 170–172, https://doi.org/10.1016/0146-6313(59)90068-1.

    Google Scholar 

  • Huggett Q J. 1987. Mapping of hemipelagic versus turbiditic muds by feeding traces observed in deep-sea photographs. Geological Society London Special Publications31 (1): 105–112, https://doi.org/10.1144/GSL.SP.1987.031.01.09.

    Article  Google Scholar 

  • Hughes D J. 2014. Benthic habitat and megafaunal zonation across the Hebridean Slope, western Scotland, analysed from archived seabed photographs. Journal of the Marine Biological Association of the United Kingdom94 (4): 643–658, https://doi.org/10.1017/S0025315413001896.

    Article  Google Scholar 

  • Johnson E R. 1939. Under sea cinematography. Journal of the Smpte- Society of Motion Picture and Television Engineers 3–17.

    Google Scholar 

  • Johnson H R, Backus R H, Hersey J B, Owen D M. 1956. Suspended echo-sounder and camera studies of midwater sound scatterers. Deep Sea Research3 (4): 266–272, https://doi.org/10.1016/0146-6313(56)90016-8.

    Article  Google Scholar 

  • Jones D O B, Bett B J, Tyler P A. 2007. Megabenthic ecology of the deep Faroe–Shetland channel: a photographic study. Deep Sea Research Part I: Oceanographic Research Papers54 (7): 1 111–1 128, https://doi.org/10.1016/j.dsr.2007.04.001.

    Article  Google Scholar 

  • Nybakken J, Craig S, Smith-Beasley L, Moreno G, Summers A, Weetman L. 1998. Distribution density and relative abundance of benthic invertebrate megafauna from three sites at the base of the continental slope off central California as determined by camera sled and beam trawl. Deep Sea Research Part II: Topical Studies in Oceanography45 (8–9): 1 753–1 780, https://doi.org/10.1016/S0967-0645(98)80016-7.

    Article  Google Scholar 

  • Ohta S. 1976. A precise and continuous monitoring system of the distance between the near-bottom instruments and the sea floor. Journal of the Oceanographical Society of Japan32 (2): 65–73. https://doi.org/10.1007/BF02107373.

    Article  Google Scholar 

  • Ohta S. 1984. Star-shaped feeding traces produced by echiuran worms on the deep-sea floor of the Bay of Bengal. Deep Sea Research Part A Oceanographic Research Papers31 (12): 1 415–1 432, https://doi.org/10.1016/0198-0149(84)90080-3.

    Article  Google Scholar 

  • Peng S Y, Li X Z, Wang H F, Zhang B L. 2014. Macrobenthic community structure and species composition in the Yellow Sea and East China Sea in jellyfish bloom. Chinese Journal of Oceanology and Limnology32 (3): 576–594, https://doi.org/10.1007/s00343-014-3068-8.

    Article  Google Scholar 

  • Piepenburg D, Schmid M K. 1996. Distribution, abundance, biomass, and mineralization potential of the epibenthic megafauna of the Northeast Greenland shelf. Marine Biology125 (2): 321–332, https://doi.org/10.1007/BF00346313.

    Article  Google Scholar 

  • Piepenburg D, Schmid M K. 1997. A photographic survey of the epibenthic megafauna of the Arctic Laptev Sea shelf: distribution, abundance, and estimates of biomass and organic carbon demand. Marine Ecology Progress147 (1–3): 63–75, https://doi.org/10.3354/meps147063.

    Article  Google Scholar 

  • Piepenburg D, Von Juterzenka K. 1994. Abundance, biomass and spatial distribution pattern of brittle stars (Echinodermata: Ophiuroidea) on the Kolbeinsey Ridge north of Iceland. Polar Biology14 (3): 185–194, https://doi.org/10.1007/BF00240523.

    Article  Google Scholar 

  • Qi J, Li F Y, Song J M, Gao S, Wang G Z, Cheng P. 2004. Sedimentation rate and flux of the north Yellow sea. Marine Geology & Quaternary Geology24 (2): 9–14. (in Chinese with English abstract)

    Google Scholar 

  • Ruhl H A. 2007. Abundance and size distribution dynamics of abyssal epibenthic megafauna in the northeast Pacific. Ecology88 (5): 1 250–1 262, https://doi.org/10.1890/06-0890.

    Article  Google Scholar 

  • Rybakova E, Galkin S, Bergmann M, Soltwedel T, Gebruk A. 2013. Density and distribution of megafauna at the Håkon Mosby Mud Volcano (the Barents Sea) based on image analysis. Biogeosciences10 (5): 3 359–3 374, https://doi.org/10.5194/bg-10-3359-2013.

    Article  Google Scholar 

  • Smith K L Jr, Kaufmann R S, Wakefield W W. 1993. Mobile megafaunal activity monitored with a time-lapse camera in the abyssal North Pacific. Deep Sea Research Part I: Oceanographic Research Papers40 (11–12): 2 307–2 324, https://doi.org/10.1016/0967-0637(93)90106-D.

    Article  Google Scholar 

  • Stübing D, Piepenburg D. 1998. Occurrence of the benthic trachymedusa Ptychogastria polaris Allman, 1878 (Cnidaria: Hydrozoa) off Northeast Greenland and in the northern Barents Sea. Polar Biology19 (3): 193–197, https://doi.org/10.1007/s003000050234.

    Article  Google Scholar 

  • Theroux R B. 1984. Photographic systems utilized in the study of sea-bottom populations. In: Underwater Photography Scientific and Engineering Applications. Van Nostrand Reinhold Company, New York. p.69–94.

    Google Scholar 

  • Uzmann J R, Cooper R A, Theroux R B, Wigley R L. 1977. Synoptic comparison of three sampling techniques for estimating abundance and distribution of selected megafauna: submersible vs camera sled vs otter trawl. Marine Fisheries Review, 39 (12): 11–19.

    Google Scholar 

  • Vevers H G. 1951. Photography of the sea floor. Journal of the Marine Biological Association of the United Kingdom30 (1): 101–112, https://doi.org/10.1017/S0025315400012601.

    Article  Google Scholar 

  • Vevers H G. 1952. A photographic survey of certain areas of sea floor near plymouth. Journal of the Marine Biological Association of the United Kingdom31 (2): 215–221, https://doi.org/10.1017/S0025315400052942.

    Article  Google Scholar 

  • Wakefield W W, Genin A. 1987. The use of a Canadian (perspective) grid in deep-sea photography. Deep Sea Research Part A Oceanographic Research Papers34 (3): 469–478, https://doi.org/10.1016/0198-0149(87)90148-8.

    Article  Google Scholar 

  • Wang W, Li A C, Xu F J, Huang P, Li Y. 2009. Distribution of surface sediments and sedimentary environment in the North Yellow Sea. Oceanologia et Limnologia Sinica40 (5): 525–531. (in Chinese with English abstract)

    Google Scholar 

  • Xu Y H, Pan S M, Gao J H, Hou X L, Ma Y F, Hao Y P. 2018. Sedimentary record of plutonium in the North Yellow Sea and the response to catchment environmental changes of inflow rivers. Chemosphere207: 130–138, https://doi.org/10.1016/j.chemosphere.2018.05.082.

    Article  Google Scholar 

  • Xu Y, Sui J X, Yang M, Sun Y, Li X Z, Wang H F, Zhang B L. 2016. Variation in the macrofaunal community over large temporal and spatial scales in the southern Yellow Sea. Journal of Marine Systems173: 9–20, https://doi.org/10.1016/j.jmarsys.2016.11.006.

    Article  Google Scholar 

  • Zhang J H, Fang J G, Wang S H. 2008. Carrying capacity for Patinopecten yessoensis in Zhang Zidao Island, China. Journal of Fisheries of China32 (2): 236–241. (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgment

We thank the captain and the crew of R/V #19 Liao-Chang-Yu for their help during the expedition to the Zhangzi Island sea area, and the support from Zhangzidao group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Sun.

Additional information

Supported by the Key Program for International S&T Cooperation Projects: Sino-Australian Center for Healthy Coasts (No. 2016YFE0101500), the Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDA23050501, XDA19060201), and the Taishan Scholars Project to SUN Song

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, N., Sun, S., Wang, S. et al. An enhanced underwater camera apparatus for seabed observation of megabenthic epifauna in the northern Yellow Sea. J. Ocean. Limnol. 38, 1799–1810 (2020). https://doi.org/10.1007/s00343-019-9122-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-9122-9

Keyword

Navigation