Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Local-scale patterns of genetic variation in coexisting floating-leaved Nymphoides peltata and submerged Myriophyllum spicatum in Donghu Lake

  • 1 Accesses

Abstract

Coexisting floating-leaved and submerged plants experience similar environmental changes but may evolve different patterns of genetic variation. To compare local-scale genetic variation, we collected samples of floating-leaved Nymphoides peltata and submerged Myriophyllum spicatum coexisting in a disturbed urban lake in China. At the subpopulation level, using microsatellites, M. spicatum had higher clonal diversity than N. peltata. M. spicatum had 28.4% multilocus genotypes (MLGs) shared between subpopulations, but N. peltata had only one MLG shared between two adjacent subpopulations. N. peltata displayed more genetic variation between subpopulations than within subpopulations, but the reverse was true for M. spicatum. Principal components and Bayesian cluster analyses showed that individuals from each subpopulation of N. peltata tended to have relatively close genetic relationships. For M. spicatum, individuals from each subpopulation were genetically scattered with those from other subpopulations. Our results imply that in unpredictable adverse environments M. spicatum may be less subjected to local-deme extinction than N. peltata because of genetically diverse clones at the subpopulation level. This characteristic means that following adverse events, M. spicatum may rapidly restore subpopulation distributions via re-colonization and intense gene flow among subpopulations.

This is a preview of subscription content, log in to check access.

References

  1. Aiken S G, Newroth P R, Wile I. 1979. The biology of Canadian weeds: 34. Myriophyllum spicatum L. Canadian Journal of Plant Science, 59(1): 201–215.

  2. Andreakis N, Kooistra W H C F, Procaccini G. 2009. High genetic diversity and connectivity in the polyploid invasive seaweed Asparagopsis taxiformis (Bonnemaisoniales) in the Mediterranean, explored with microsatellite alleles and multilocus genotypes. Molecular Ecology, 18(2): 212–226.

  3. Barrat-Segretain M H. 1996. Strategies of reproduction, dispersion, and competition in river plants: a review. Vegetatio, 123(1): 13–37.

  4. Barrett S C H, Eckert C G, Husband B C. 1993. Evolutionary processes in aquatic plant populations. Aquatic Botany, 44(2–3): 105–145.

  5. Bornette G, Puijalon S. 2010. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences, 73(1): 1–14.

  6. Canale C I, Henry P Y. 2010. Adaptive phenotypic plasticity and resilience of vertebrates to increasing climatic unpredictability. Climate Research, 43: 135–147.

  7. Cao Q J, Liu N, Wang L. 2016. Relative response to mechanical stress of co-existing aquatic species, floating-leaved Nymphoides peltata and submerged Myriophyllum spicatum. Pakistan Journal of Botany, 48(3): 935–943.

  8. Cao Q J, Mei F F, Wang L. 2017. Population genetic structure in six sympatric and widespread aquatic plants inhabiting diverse lake environments in China. Ecology and Evolution, 7(15): 5 713–5 723.

  9. Darbyshire S J, Francis A. 2008. The biology of invasive alien plants in Canada. 10. Nymphoides peltata (S. G. Gmel.) Kuntze. Canadian Journal of Plant Science, 88(4): 811–829.

  10. Dorken M E, Eckert C G. 2001. Severely reduced sexual reproduction in northern populations of a clonal plant, Decodonverticillatus (Lythraceae). Journal of Ecology, 89(3): 339–350.

  11. Dufresne F, Stift M, Vergilino R, Mable B K. 2014. Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Molecular Ecology, 23(1): 40–69.

  12. Ehlers A, Worm B, Reusch T B H. 2008. Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming. Marine Ecology Progress Series, 355: 1–7.

  13. Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the SOFTWARE STRUCTURE: a simulation study. Molecular Ecology, 14(8): 2 611–2 620.

  14. Flora of China Editorial Committee. 2018. Flora of China. http://www.iplant.cn. Accessed on 2018-04-09.

  15. Hamrick J L, Godt M J W. 1996. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society B: Biological Sciences, 351(1345): 1 291–1 298.

  16. Harrison S, Hastings A. 1996. Genetic and evolutionary consequences of metapopulation structure. Trends in Ecology & Evolution, 11(4): 180–183.

  17. Havel J E, Kovalenko K E, Thomaz S M, Amalfitano S, Kats L B. 2015. Aquatic invasive species: challenges for the future. Hydrobiologia, 750(1): 147–170.

  18. Hughes A R, Stachowicz J J. 2004. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proceedings of the National Academy of Sciences of the United States of America, 101(24): 8 998–9 002.

  19. Li W. 2014. Environmental opportunities and constraints in the reproduction and dispersal of aquatic plants. Aquatic Botany, 118: 62–70.

  20. Liao Y Y, Yue X L, Guo Y H, Gituru W R, Wang Q F, Chen J M. 2013. Genotypic diversity and genetic structure of populations of the distylous aquatic plant Nymphoides peltata (Menyanthaceae) in China. Journal of Systematics and Evolution, 51(5): 536–544.

  21. Maclean I M D, Wilson R J. 2011. Recent ecological responses to climate change support predictions of high extinction risk. Proceedings of the National Academy of Sciences of the United States of America, 108(30): 12 337–12 342.

  22. Madgwick G, Emson D, Sayer C D, Willby N J, Rose N L, Jackson M J, Kelly A. 2011. Centennial-scale changes to the aquatic vegetation structure of a shallow eutrophic lake and implications for restoration. Freshwater Biology, 56(12): 2 620–2 636.

  23. Massa S I, Paulino C M, Serrào E A, Duarte C M, Arnaud-Haond S. 2013. Entangled effects of allelic and clonal (genotypic) richness in the resistance and resilience of experimental populations of the seagrass Zostera noltii to diatom invasion. BMC Ecology, 13: 39, https://doi.org/10.1186/1472-6785-13-39.

  24. Meirmans P G, van Tienderen P H. 2004. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular EcologyNotes, 4(4): 792–794.

  25. Nikolić L, Čobanović K, Lazić D. 2007. Nymphoides peltata (Gmel.) Kuntze, Myriophyllum spicatum L. and Ceratophyllum demersum L. biomass dynamics in Lake Provala (the Vojvodina Province, Serbia). Central European Journal of Biology, 2(1): 156–168.

  26. Peakall R, Smouse P E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19): 2 537–2 539.

  27. Phan T T H, De Raeymaeker M, Luong Q D, Triest L. 2017. Clonal and genetic diversity of the threatened seagrass Halophila beccarii in a tropical lagoon: resilience through short distance dispersal. Aquatic Botany, 142: 96–104.

  28. Philbrick C T, Les D L. 1996. Evolution of aquatic angiosperm reproductive systems: what is the balance between sexual and asexual reproduction in aquatic angiosperms? BioScience, 46(11): 813–826.

  29. Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155(2): 945–959.

  30. Qiu D R, Wu Z B, Liu B Y, Deng J Q, Fu G P, He F. 2001. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China. Ecological Engineering, 18(2): 147–156.

  31. Rejmankova E. 2011. The role of macrophytes in wetland ecosystems. Journal of Ecology and Environment, 34(4): 333–345.

  32. Reusch T B H, Ehlers A, Hämmerli A, Worm B. 2005. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences of the United States of America, 102(8): 2 826–2 831.

  33. Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 81(24): 8 014–8 018.

  34. Sculthorpe C D. 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, London.

  35. Sherman C D H, Ayre D J. 2008. Fine-scale adaptation in a clonal sea anemone. Evolution, 62(6): 1 373–1 380.

  36. Sherman C D H, York P H, Smith T M, Macreadie P I. 2016. Fine-scale patterns of genetic variation in a widespread clonal seagrass species. Marine Biology, 163(4): 82, https://doi.org/10.1007/s00227-016-2861-7.

  37. Smith D H, Madsen J D, Dickson K L, Beitinger T L. 2002. Nutrient effects on autofragmentation of Myriophyllum spicatum. Aquatic Botany, 74(1): 1–17.

  38. Uesugi R, Tani N, Goka K, Nishihiro J, Tsumura Y, Washitani I. 2005. Isolation and characterization of highly polymorphic microsatellites in the aquatic plant, Nymphoides peltata (Menyanthaceae). Molecular EcologyNotes, 5(2): 343–345.

  39. Wang Y, Wang Q F, Guo Y H, Barrett S C H. 2005. Reproductive consequences of interactions between clonal growth and sexual reproduction in Nymphoides peltata: a distylous aquatic plant. New Phytologist, 165(1): 329–336.

  40. Wingfield J C, Kelley J P, Angelier F, Chastel O, Lei F M, Lynn S E, Miner B, Davis J E, Li D M, Wang G. 2011. Organism-environment interactions in a changing world: a mechanistic approach. Journal of Ornithology, 152(S1): 279–288.

  41. Wu Z G, Yu D, Li X, Xu X W. 2016. Influence of geography and environment on patterns of genetic differentiation in a widespread submerged macrophyte, Eurasian watermilfoil (Myriophyllum spicatum L., Haloragaceae). Ecology and Evolution, 6(2): 460–468.

  42. Wu Z G, Yu D, Xu X W. 2013. Development of microsatellite markers in the hexaploid aquatic macrophyte, Myriophyllum spicatum (Haloragaceae). Applications in Plant Sciences, 1(2): 1200230. https://doi.org/10.3732/apps.1200230.

  43. Yuan Y Y, Wang Q F, Chen J M. 2013. Development of SSR markers in aquatic plant Nymphoides peltata (Menyanthaceae) based on information from transcriptome sequencing. Plant Science Journal, 31 (5): 485–492. (in Chinese with English abstract)

  44. Zhou J, Chen J K. 1996. Phytocoenological studies on floating-leaved anchored aquatic plants in Futouhu Lake, Hubei Province—II. The structure of Comm. Nymphoides peltata. Acta Hydrobiologica Sinica, 20(1): 49–56. (in Chinese with English abstract)

Download references

Author information

Correspondence to Qianjin Cao.

Additional information

Supported by the National Natural Science Foundation of China (No. 31600325)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Hu, F. & Liu, N. Local-scale patterns of genetic variation in coexisting floating-leaved Nymphoides peltata and submerged Myriophyllum spicatum in Donghu Lake. J. Ocean. Limnol. (2020). https://doi.org/10.1007/s00343-019-9068-y

Download citation

Keywords

  • aquatic plants
  • life forms
  • microsatellites
  • clonal diversity
  • eutrophic lake