Advertisement

Assessment of internal controls for data normalization of gene expression after different bacterial stimulation by quantitative real-time PCR in golden pompano Trachinotus blochii

  • Xiaojuan Chen
  • Xiaoqi Zhang
  • Yun SunEmail author
  • Zhigang Tu
  • Zhenjie Cao
  • Shifeng Wang
  • Yongcan ZhouEmail author
Article

Abstract

Trachinotus blochii is one of the important commercial fish species. In this study, we aim to confirm the reliability reference genes in T. blochii during different bacterial challenge through quantitative real-time PCR (qRT-PCR). The expression of the seven selected genes in four immune organs (i.e., spleen, kidney, intestine, and gill) stimulated with Vibrio harveyi, Edwardsiella tarda, and Streptococcus agalactiae were determined by qRT-PCR. The PCR data was analyzed using the geNorm and NormFinder algorithms. The results showed the selection of the internal controls should be tissue specific when studying gene expression in response to bacterial stimulation. After 48 h of stimulation with V. harveyi, geNorm ranked EF1A/Actin, 18S rRNA/B2M, UBCE/B2M, and 18S rRNA/B2M, as the most stably expressed genes in spleen, kidney, intestine, and gill, respectively. After 48 h of stimulation with E. tarda, geNorm ranked 18S rRNA/EF1A, 18S rRNA/B2M, B2M/RPL13, and 18S rRNA/EF1A, as the most stably expressed genes in spleen, kidney, intestine, and gill, respectively. After 48 h of stimulation with S. agalactiae, 18S rRNA/ EF1A, 18S rRNA/B2M, B2M/Actin, and 18S rRNA/B2M were ranked as the most stably expressed genes in spleen, kidney, intestine, and gill, respectively. Compared to the results analyzed by geNorm, reference genes received similar rankings when using NormFinder software. The results showed that the reference genes appeared to be not only tissue specific, but also specific to the infecting species of bacteria. If one gene is preferred when T. blochii were infected by bacteria, 18S rRNA, B2M, B2M, 18S rRNA may be used in spleen, kidney, intestine, and gill, respectively.

Keyword

Trachinotus blochii housekeeping gene expression stability reference gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amal M N A, Zamri-Saad M, Iftikhar A R, Siti-Zahrah A, Aziel S, Fahmi S. 2012. An Outbreak of Streptococcus agalactiae Infection in Cage-Cultured Golden Pompano, Trachinotus blochii (Lacépède), in Malaysia. Journal of Fish Diseases, 35 (11): 849–852,  https://doi.org/10.1111/j.1365-2761.2012.01443.x.Google Scholar
  2. Andersen C L, Jensen J L, Ørntof T F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64 (15): 5 245-5 250,  https://doi.org/10.1158/0008-5472.CAN-04-0496.Google Scholar
  3. Bower N I, Johnston I A. 2009. Selection of reference genes for expression studies with fish myogenic cell cultures. BMC Molecular Biology, 10: 80,  https://doi.org/10.1186/1471-2199-10-80.CrossRefGoogle Scholar
  4. Dang W, Sun L. 2011. Determination of internal controls for quantitative real time RT-PCR analysis of the effect of Edwardsiella tarda infection on gene expression in turbot (Scophthalmus maximus). Fish & Shellfish Immunology, 30 (2): 720–728,  https://doi.org/10.1016/j.fsi.2010.12.028.CrossRefGoogle Scholar
  5. Fernandes J M O, Mommens M, Hagen Ø, Babiak I, Solberg C. 2008. Selection of suitable reference genes for realtime PCR studies of Atlantic halibut development. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 150 (1): 23–32,  https://doi.org/10.1016/j.cbpb.2008.01.003.CrossRefGoogle Scholar
  6. Filby A L, Tyler C R. 2007. Appropriate ‘housekeeping’ genes for use in expression profiling the effects of environmental estrogens in fish. BMC Molecular Biology, 8: 10,  https://doi.org/10.1186/1471-2199-8-10.CrossRefGoogle Scholar
  7. Fransiska J D, Raza’i T S, Wulandari R. 2019. Inhibitory effect of lactic acid bacteria from digestive tract of Trachinotus blochii againts Vibrio harveyi in in-vitro. Intek Akuakultur, 3 (1): 57–65,  https://doi.org/10.31629/intek.v3i1.1000.Google Scholar
  8. Haller F, Kulle B, Schwager S, Gunawan B, Von Heydebreck A, Sültmann H, Füzesi L. 2004. Equivalence test in quantitative reverse transcription polymerase chain reaction: confirmation of reference genes suitable for normalization. Analytical Biochemistry, 335 (1): 1–9,  https://doi.org/10.1016/j.ab.2004.08.024.CrossRefGoogle Scholar
  9. Hattingh J. 1977. The effect of tricaine methanesulphonate (MS-222) on the microhaematocrit of fish blood. Journal of Fish Biology, 10 (5): 453–455,  https://doi.org/10.1111/j.1095-8649.1977.tb04077.x.CrossRefGoogle Scholar
  10. Heid C A, Stevens J, Livak K J, Williams P M. 1996. Real time quantitative PCR. Genome Research, 6 (10): 986–994,  https://doi.org/10.1101/gr.6.10.986.CrossRefGoogle Scholar
  11. Huggett J, Dheda K, Bustin S, Zumla A. 2005. Real-time RTPCR normalisation; strategies and considerations. Genes & Immunity, 6 (4): 279–284,  https://doi.org/10.1038/sj.gene.6364190.CrossRefGoogle Scholar
  12. Infante C, Matsuoka M P, Asensio E, Cañavate J P, Reith M, Manchado M. 2008. Selection of housekeeping genes for gene expression studies in larvae from flatfish using realtime PCR. BMC Molecular Biology, 9: 28,  https://doi.org/10.1186/1471-2199-9-28.CrossRefGoogle Scholar
  13. Kubista M, Andrade J M, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L, Ståhlberg A, Zoric N. 2006. The real-time polymerase chain reaction. Molecular Aspects of Medicine, 27 (2-3): 95–125,  https://doi.org/10.1016/j.mam.2005.12.007.CrossRefGoogle Scholar
  14. Li D, Wu P, He M F, Li W, Xiao T Y, Chu W Y. 2016. Screening of reference genes in Siniperca chuatsi for qRT-PCR analysis. Life Science Research, 20 (3): 213–217,  https://doi.org/10.16605/j.cnki.1007-7847.2016.03.005. (in Chinese with English abstract)Google Scholar
  15. Li Z J, Yang L J, Wang J, Shi W C, Pawar R A, Liu Y M, Xu C G, Cong W H, Hu Q R, Lu T Y, Xia F, Guo W, Zhao M, Zhang Y Y. 2010. β - Actin is a useful internal control for tissue-specific gene expression studies using quantitative real-time PCR in the half-smooth tongue sole Cynoglossus semilaevis challenged with LPS or Vibrio anguillarum. Fish & Shellfish Immunology, 29 (1): 89–93,  https://doi.org/10.1016/j.fsi.2010.02.021.CrossRefGoogle Scholar
  16. Liu D W, Chen S T, Liu H P. 2005. Choice of endogenous control for gene expression in nonsmall cell lung cancer. European Respiratory Journal, 26 (6): 1 002-1 008,  https://doi.org/10.1183/09031936.05.00050205.CrossRefGoogle Scholar
  17. Liu M, Chen X, Yang S Y. 2014. Marine Fishes of Southern Fujian, China, Volume 2. Ocean Press, Beijing, China. p.165–167. (in Chinese)Google Scholar
  18. Løvoll M, Austbø L, Jørgensen J B, Rimstad E, Frost P. 2011. Transcription of reference genes used for quantitative RTPCR in Atlantic salmon is affected by viral infection. Veterinary Research, 42: 8,  https://doi.org/10.1186/1297.9716.42-8.CrossRefGoogle Scholar
  19. McCurley A T, Callard G V. 2008. Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Molecular Biology, 9: 102,  https://doi.org/10.1186/1471-2199-9-102.CrossRefGoogle Scholar
  20. Øvergård A C, Nerland A H, Patel S. 2010. Evaluation of potential reference genes for real time RT-PCR studies in Atlantic halibut (Hippoglossus Hippoglossus L.); during development, in tissues of healthy and NNV-injected fish, and in anterior kidney leucocytes. BMC Molecular Biology, 11: 36,  https://doi.org/10.1186/1471-2199-11-36.CrossRefGoogle Scholar
  21. Pfaffl M W, Tichopad A, Prgomet C, Neuvians T P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestkeeperexcel- based tool using pair-wise correlations. Biotechnology Letters, 26 (6): 509–515,  https://doi.org/10.1023/B:BILE.0000019559.84305.47.CrossRefGoogle Scholar
  22. Qiu R, Sun B G, Fang S S, Sun L, Liu X. 2013. Identification of normalization factors for quantitative real-time RTPCR analysis of gene expression in Pacific abalone Haliotis discus hannai. Chinese Journal of Oceanology and Limnology, 31 (2): 421–430,  https://doi.org/10.1007/s00343-013-2221-0.CrossRefGoogle Scholar
  23. Ransbotyn V, Reusch T B H. 2006. Housekeeping gene selection for quantitative real-time PCR assays in the seagrass Zostera marina subjected to heat stress. Limnology and Oceanography Methods, 4 (10): 367–373,  https://doi.org/10.4319/lom.2006.4.367.CrossRefGoogle Scholar
  24. Schoettger R A, Julin A M. 1967. Efficacy of MS-222 as an anaesthetic on four salmonids. In: Investigations in Fish Control, Resource Publication 19. U.S. Department of the Interior, Bureau of Sport Fisheries and Wildlife, Washington, DC, p.3–15.Google Scholar
  25. Selvey S, Thompson E W, Matthaei K, Lea R A, Irving M G, Griffiths L R. 2001. Beta-actin—an unsuitable internal control for RT-PCR. Molecular and Cellular Probes, 15 (5): 307–311,  https://doi.org/10.1006/mcpr.2001.0376.CrossRefGoogle Scholar
  26. Sun B G, Hu Y H. 2015. Evaluation of potential internal references for quantitative real-time RT-PCR normalization of gene expression in red drum (Sciaenops ocellatus). Fish Physiology and Biochemistry, 41 (3): 695–704,  https://doi.org/10.1007/s10695-015-0039-8.CrossRefGoogle Scholar
  27. Sun K S, Wang H L, Zhang M, Xiao Z Z, Sun L. 2009. Genetic mechanisms of multi-antimicrobial resistance in a pathogenic Edwardsiella tarda strain. Aquaculture, 289 (1): 134–139,  https://doi.org/10.1016/j.aquaculture.2008.12.021.CrossRefGoogle Scholar
  28. Vandesompele J, De Preter K, Pattyn F, Poppe B, Roy N V, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3 (7): RESEARCH0034,  https://doi.org/10.1186/gb-2002-3-7-research0034.
  29. Wang H R, Hu Y H, Zhang W W, Sun L. 2009. Construction of an attenuated Pseudomonas fluorescens strain and evaluation of its potential as a cross-protective vaccine. Vaccine, 27(30): 4 047-4 055,  https://doi.org/10.1016/j.vaccine.2009.04.023.CrossRefGoogle Scholar
  30. Yoo W G, Kim T I, Li S Y, Kwon O S, Cho P Y, Kim T S, Kim K, Hong S J. 2009. Reference genes for quantitative analysis on Clonorchis sinensis gene expression by realtime PCR. Parasitology Research, 104 (2): 321–328,  https://doi.org/10.1007/s00436-008-1195-x.CrossRefGoogle Scholar
  31. Zheng W J, Sun L. 2011. Evaluation of housekeeping genes as references for quantitative real time RT-PCR analysis of gene expression in Japanese flounder (Paralichthys olivaceus). Fish & Shellfish Immunology, 30 (2): 638–645,  https://doi.org/10.1016/j.fsi.2010.12.014.CrossRefGoogle Scholar
  32. Zhong Q W, Zhang Q Q, Wang Z G, Qi J, Chen Y J, Li S, Sun Y Y, Li C M, Lan X. 2008. Expression profiling and validation of potential reference genes during Paralichthys olivaceus embryogenesis. Marine Biotechnology, 10 (3): 310–318,  https://doi.org/10.1007/s10126-007-9064-7.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikouChina
  2. 2.Hainan Academy of Ocean and Fisheries SciencesHaikouChina

Personalised recommendations