Heritability of resistance-related gene expression traits and their correlation with body size of clam Meretrix petechialis

  • Fengjuan Jiang
  • Xin Yue
  • Shujing Zhang
  • Jiajia Yu
  • Rui Wang
  • Baozhong Liu
  • Hongxia WangEmail author


Gene expression variation can be considered as a phenotype, and it plays an important role in both acclimation and adaption. However, genetic variation of gene expression received much less attention than traditional commercial traits in aquaculture. To estimate the genetic variation and heritability of gene transcription in clam Meretrix petechialis, five Vibrio resistance-related genes were selected for gene expression analysis in the digestive gland, and an animal linear model was used to analyze data from quantitative real-time PCR (qRT-PCR). Among the five genes, BIRC7 showed significant additive genetic variations, the heritability of this gene of 12-month- and 15-month-old clams were 0.84±0.32 and 0.91±0.34, respectively. The heritability of other four genes (Bax, NFIL3, Big-Def, and CTL9) expression were low-to-moderate but not significantly expressed. Additionally, no significant phenotypic and genetic correlations between the BIRC7 transcription trait and body size were detected. This study highlights that certain gene expression variation is heritable and provides a reference for indirect selection of M. petechialis with high Vibrio resistance.


Meretrix petechialis transcription trait body size heritability genetic correlation 



apoptosis regulator Bax


baculoviral IAP repeat-containing protein 7 isoform X3


Big defensing


C-type lectin 9


nuclear factor interleukin-3-regulated protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonello J, Massault C, Franch R, Haley C, Pellizzari C, Bovo G, Patarnello T, De Koning D J, Bargelloni L. 2009. Estimates of heritability and genetic correlation for body length and resistance to fish pasteurellosis in the gilthead sea bream (Sparus aurata L.). Aquaculture298 (1-2): 29–35.CrossRefGoogle Scholar
  2. Aykanat T, Heath J W, Dixon B, Heath D D. 2012. Additive, non-additive and maternal effects of cytokine transcription in response to immunostimulation with Vibrio vaccine in Chinook salmon (Oncorhynchus tshawytscha). Immunogenetics, 64 (9): 691–703.CrossRefGoogle Scholar
  3. Ayroles J F, Carbone M A, Stone E A, Jordan K W, Lyman R F, Magwire M M, Rollmann S M, Duncan L H, Lawrence F, Anholt R R, Mackay T F. 2009. Systems genetics of complex traits in Drosophila melanogaster Nature Genetics, 41 (3): 299–307.CrossRefGoogle Scholar
  4. Bangera R, Ødegård J, Præbel A K, Mortensen A, Nielsen H M. 2011. Genetic correlations between growth rate and resistance to vibriosis and viral nervous necrosis in Atlantic cod (Gadus morhua L.). Aquaculture, 317 (1-4): 67–73.CrossRefGoogle Scholar
  5. Berg P, Henryon M. 1999. Selection response under alternative mating designs in fish. Proc Adv Anim Breed Gen., 13: 297–300.Google Scholar
  6. Bishop S C, Woolliams J A. 2014. Genomics and disease resistance studies in livestock. Livestock Science166: 190–198.CrossRefGoogle Scholar
  7. Brokordt K B, González R C, Farías W J, Winkler F M. 2015. Potential response to selection of HSP70 as a component of innate immunity in the abalone Haliotis rufescens PLoS One, 10 (11): e0141959.CrossRefGoogle Scholar
  8. Cheung V G, Spielman R S. 2002. The genetics of variation in gene expression. Nature Genetics, 32 (S4): 522–525.CrossRefGoogle Scholar
  9. Crawford D L, Powers D A. 1992. Evolutionary adaptation to different thermal environments via transcriptional regulation. Molecular Biology and Evolution9 (5): 806–813.Google Scholar
  10. Dixon A L, Liang L M, Moffatt M F, Chen W, Heath S, Wong K C C, Taylor J, Burnett E, Gut I, Farrall M, Lathrop G M, Abecasis G R, Cookson W O. 2007. A genome-wide association study of global gene expression. Nature Genetics, 39 (10): 1 202–1 207.CrossRefGoogle Scholar
  11. Engwerda C R, Kaye P M. 2000. Organ-specific immune responses associated with infectious disease. Immunology Today, 21 (2): 73–78.CrossRefGoogle Scholar
  12. Evans M L, Neff B D. 2009. Non-additive genetic effects contribute to larval spinal deformity in two populations of Chinook salmon (Oncorhynchus tshawytscha). Aquaculture, 296 (1-2): 169–173.CrossRefGoogle Scholar
  13. Flores-Mara R, Rodríguez F H, Bangera R, Lhorente J P, Neira R, Newman S, Yáñez J M. 2017. Resistance against infectious pancreatic necrosis exhibits significant genetic variation and is not genetically correlated with harvest weight in rainbow trout (Oncorhynchus mykiss). Aquaculture, 479: 155–160.CrossRefGoogle Scholar
  14. Gao X G, He C B, Liu H, Li H J, Zhu D, Cai S L, Xia Y, Wang Y, Yu Z. 2012. Intracellular Cu/Zn superoxide dismutase (Cu/Zn-SOD) from hard clam Meretrix meretrix: its cDNA cloning, mRNA expression and enzyme activity. Molecular Biology Reports, 39 (12): 10 713–10 722.CrossRefGoogle Scholar
  15. Gilad Y, Rifkin S A, Pritchard J K. 2008. Revealing the architecture of gene regulation: the promise of eQTL studies. Trends in Genetics, 24 (8): 408–415.CrossRefGoogle Scholar
  16. Gilmour A R, Gogel B, Cullis B, Thompson R, Butler D. 2009. ASReml User Guide Release 3.0. VSN International Ltd., Hemel Hempstead, UK.Google Scholar
  17. He X, Houde A L S, Pitcher T E, Heath D D. 2017. Genetic architecture of gene transcription in two Atlantic salmon (Salmo salar) populations. Heredity (Edinb)119 (2): 117–124.CrossRefGoogle Scholar
  18. Houle D, Govindaraju D R, Omholt S. 2010. Phenomics: the next challenge. Nature Reviews Genetics11 (12): 855–866.CrossRefGoogle Scholar
  19. Jiang F J, Wang H X, Yue X, Zhang S J, Liu B Z. 2018. Integrating the Vibrio-resistance phenotype and gene expression data for discovery of markers used for resistance evaluation in the clam Meretrix petechialis Aquaculture, 482: 130–136.CrossRefGoogle Scholar
  20. Jiang F J, Yue X, Wang H X, Liu B Z. 2017. Transcriptome profiles of the clam Meretrix petechialis hepatopancreas in response to Vibrio infection. Fish & Shellfish Immunology, 62: 175–183.CrossRefGoogle Scholar
  21. Langevin C, Blanco M, Martin S A, Jouneau L, Bernardet J F, Houel A, Lunazzi A, Duchaud E, Michel C, Quillet E, Boudinot P. 2012. Transcriptional responses of resistant and susceptible fish clones to the bacterial pathogen Flavobacterium psychrophilum PLoS One7 (6): e39126.CrossRefGoogle Scholar
  22. Lavine M D, Strand M R. 2002. Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology, 32 (10): 1 295–1 309.CrossRefGoogle Scholar
  23. Leder E H, McCairns R J, Leinonen T, Cano J M, Viitaniemi H M, Nikinmaa M, Primmer C R, Merilä J. 2015. The evolution and adaptive potential of transcriptional variation in sticklebacks—signatures of selection and widespread heritability. Molecular Biology and Evolution32 (3): 674–689.CrossRefGoogle Scholar
  24. Liang B B, Jiang F J, Zhang S J, Yue X, Wang H X, Liu B Z. 2017. Genetic variation in vibrio resistance in the clam Meretrix petechialis under the challenge of Vibrio parahaemolyticus. Aquaculture, 468: 458–463.CrossRefGoogle Scholar
  25. Liu B Z, Dong B, Tang B J, Zhang T, Xiang J H. 2006. Effect of stocking density on growth, settlement and survival of clam larvae, Meretrix meretrix Aquaculture258 (1-3): 344–349.CrossRefGoogle Scholar
  26. Marancik D, Gao G T, Paneru B, Ma H, Hernandez A G, Salem M, Yao J B, Palti Y, Wiens G D. 2014. Whole-body transcriptome of selectively bred, resistant-, control-, and susceptible-line rainbow trout following experimental challenge with Flavobacterium psychrophilum Front Genetiers, 5: 453.Google Scholar
  27. Nie Q, Yue X, Chai X L, Wang H X, Liu B Z. 2013. Three vibrio-resistance related EST-SSR markers revealed by selective genotyping in the clam Meretrix meretrix Fish & Shellfish Immunology, 35 (2): 421–428.CrossRefGoogle Scholar
  28. Nie Q, Yue X, Liu B Z. 2015. Development of Vibrio spp. infection resistance related SNP markers using multiplex SNaPshot genotyping method in the clam Meretrix meretrix. Fish & Shellfish Immunology, 43 (2): 469–476.CrossRefGoogle Scholar
  29. Normandeau E, Hutchings J A, Fraser D J, Bernatchez L. 2009. Population-specific gene expression responses to hybridization between farm and wild Atlantic salmon. Evolutionary Applications, 2 (4): 489–503.CrossRefGoogle Scholar
  30. PfafflM W. 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29 (9): e45.CrossRefGoogle Scholar
  31. Powell J E, Henders A K, McRae A F, Kim J, Hemani G, Martin N G, Dermitzakis E T, Gibson G, Montgomery G W, Visscher P M. 2013. Congruence of additive and nonadditive effects on gene expression estimated from pedigree and SNP data. PLoS Genetics, 9 (5): e1003502.CrossRefGoogle Scholar
  32. Reyes-López F E, Romeo J S, Vallejos-Vidal E, Reyes-Cerpa S, Sandino A M, Tort L, Mackenzie S, Imarai M. 2015. Differential immune gene expression profiles in susceptible and resistant full-sibling families of Atlantic salmon (Salmo salar) challenged with infectious pancreatic necrosis virus (IPNV). Developmental & Comparative Immunology, 53 (1): 210–221.CrossRefGoogle Scholar
  33. Roberge C, Guderley H, Bernatchez L. 2007. Genomewide identification of genes under directional selection: gene transcription Q ST scan in diverging Atlantic salmon subpopulations. Genetics, 177 (2): 1 011–1 022.CrossRefGoogle Scholar
  34. Robinson N, Hayes B. 2008. Modelling the use of gene expression profiles with selective breeding for improved disease resistance in Atlantic salmon (Salmo salar). Aquaculture, 285 (1-4): 38–46.CrossRefGoogle Scholar
  35. Robledo D, Taggart J B, Ireland J H, McAndrew B J, Starkey W G, Haley C S, Hamilton A, Guy D R, Mota-Velasco J C, Gheyas A A, Tinch A E, Verner-Jeffreys D W, Paley R K, Rimmer G S, Tew I J, Bishop S C, Bron J E, Houston R D. 2016. Gene expression comparison of resistant and susceptible Atlantic salmon fry challenged with Infectious Pancreatic Necrosis virus reveals a marked contrast in immune response. BMC Genomics, 17: 279.CrossRefGoogle Scholar
  36. Röszer T. 2014. The invertebrate midintestinal gland (“hepatopancreas”) is an evolutionary forerunner in the integration of immunity and metabolism. Cell and Tissue Research, 358 (3): 685–695.CrossRefGoogle Scholar
  37. Silverstein J T, Vallejo R L, Palti Y, Leeds T D, Rexroad III C E, Welch T J, Wiens G D, Ducrocq V. 2009. Rainbow trout resistance to bacterial cold-water disease is moderately heritable and is not adversely correlated with growth. Journal of Animal Science, 87 (3): 860–867.CrossRefGoogle Scholar
  38. Tedeschi J N, Kennington W J, Tomkins J L, Berry O, Whiting S, Meekan M G, Mitchell N J. 2016. Heritable variation in heat shock gene expression: a potential mechanism for adaptation to thermal stress in embryos of sea turtles. Proceedings Biological Sciences, 283 (1822): 20152320.CrossRefGoogle Scholar
  39. Wang H X, Chai X L, Liu B Z. 2011. Estimation of genetic parameters for growth traits in cultured clam Meretrix meretrix (Bivalvia: Veneridae) using the Bayesian method based on Gibbs sampling. Aquaculture Research42 (2): 240–247.CrossRefGoogle Scholar
  40. Whitehead A, Crawford D L. 2006. Variation within and among species in gene expression: raw material for evolution. Molecular Ecology, 15 (5): 1 197–1 211.CrossRefGoogle Scholar
  41. Yáñez J M, Bangera R, Lhorente J P, Barría A, Oyarzún M, Neira R, Newman S. 2016. Negative genetic correlation between resistance against Piscirickettsia salmonis and harvest weight in coho salmon (Oncorhynchus kisutch). Aquaculture, 459: 8–13.CrossRefGoogle Scholar
  42. Yang J, Benyamin B, McEvoy B P, Gordon S, Henders A K, Nyholt D R, Madden P A, Heath A C, Martin N G, Montgomery G W, Goddard M E, Visscher P M. 2010. Common SNPs explain a large proportion of the heritability for human height. Nature Genetics42 (7): 565–569.CrossRefGoogle Scholar
  43. Zou L H, Liu B Z. 2016. The polymorphisms of a MIF gene and their association with Vibrio resistance in the clam Meretrix meretrix Developmental & Comparative Immunology, 62: 116–126.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fengjuan Jiang
    • 1
    • 3
  • Xin Yue
    • 1
  • Shujing Zhang
    • 1
    • 3
  • Jiajia Yu
    • 1
    • 3
  • Rui Wang
    • 1
    • 3
  • Baozhong Liu
    • 1
    • 2
  • Hongxia Wang
    • 1
    Email author
  1. 1.Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-ScienceChinese Academy of SciencesQingdaoChina
  2. 2.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations