Advertisement

Journal of Oceanology and Limnology

, Volume 37, Issue 6, pp 1857–1867 | Cite as

Surface wave simulation during winter with sea ice in the Bohai Sea

  • Che Yue
  • Jingkai LiEmail author
  • Changlong Guan
  • Xihu Lian
  • Kejian Wu
Article

Abstract

Sea ice can attenuate wave energy significantly when waves propagate through ice covers. In this study, a third-generation wave model called simulating wave nearshore (SWAN) was advanced to include damping of wave energy due to friction in the boundary layer below the ice. With the addition of an eddy viscosity wave-ice model, the resulting new SWAN model was applied to simulate wave height in the Bohai Sea during the freezing winter. Its performance was validated with available buoy data near the ice edge, and the new model showed an improvement in accuracy because it considered the ice effect on waves. We then performed a wave hindcast for the Bohai Sea during a freezing period in the winter of 2016 that had the severest ice conditions in recent years and found that the mean significant wave height changed by approximately 16.52%. In the Liaodong Bay, where sea ice concentration is highest, the change reached 32.57%, compared with the most recent SWAN model version. The average influence of sea ice on wave height simulation was also evaluated over a five-year (2013-2017) hindcast during January and February. We found that the wave height decrease was more significant in storm conditions even the eddy viscosity wave-ice model itself showed no advantage on damping stronger waves.

Keyword

eddy viscosity wave-ice model simulating wave nearshore (SWAN) Bohai Sea ice-induced wave damping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amrutha M M, Kumar V S, Sandhya K G, Nair T M B, Rathod J L. 2016. Wave hindcast studies using SWAN nested in WAVEWATCH III-comparison with measured nearshore buoy data off Karwar, eastern Arabian Sea. Ocean Engineering119: 114–124,  https://doi.org/10.1016/j.oceaneng.2016.04.032.CrossRefGoogle Scholar
  2. Battjes J A, Janssen J P F M. 1978. Energy loss and set-up due to breaking of random waves. In: Proceedings of the 16th International Conference on Coastal Engineering. ASCE, Hamburg, Germany, p.569–587.Google Scholar
  3. Booij N, Ris R C, Holthuijsen L H. 1999. A third-generation wave model for coastal regions: 1. model description and validation. Journal of Geophysical Research: Oceans104 (C4): 7 649-7 666.CrossRefGoogle Scholar
  4. Cheng S K, Rogers W E, Thomson J, Smith M, Doble M J, Wadhams P, Kohout A L, Lund B, Persson O P G, Collins III C O, Ackley S F, Montiel F, Shen H H. 2017. Calibrating a viscoelastic sea ice model for wave propagation in the arctic fall marginal ice zone. Journal of Geophysical Research: Oceans122 (11): 8 770-8 793,  https://doi.org/10.1002/2017JC013275.Google Scholar
  5. Doble M J, Bidlot J R. 2013. Wave buoy measurements at the antarctic sea ice edge compared with an enhanced ECMWF WAM: progress towards global waves-in-ice modelling. Ocean Modelling70: 166–173,  https://doi.org/10.1016/j.ocemod.2013.05.012.CrossRefGoogle Scholar
  6. Doble M J, De Carolis G, Meylan M H, Bidlot J R, Wadhams P. 2015. Relating wave attenuation to pancake ice thickness, using field measurements and model results. Geophysical Research Letters42 (11): 4 473–4 481,  https://doi.org/10.1002/2015GL063628.CrossRefGoogle Scholar
  7. Eldeberky Y, Battjes J A. 1996. Spectral modeling of wave breaking: application to Boussinesq equations. Journal of Geophysical Research: Oceans, 101 (C1): 1 253–1 26CrossRefGoogle Scholar
  8. Gemmrich J, Rogers W E, Thomson J, Lehner S. 2018. Wave evolution in office wind conditions. Journal of Geophysical Research: Oceans123(8): 5 543–5 556,  https://doi.org/10.1029/2018JC013793.Google Scholar
  9. Hasselmann K, Barnett T P, Bouws E, Carlson H, Cartwright D E, Enke K, Ewing J A, Gienapp H G, Hasselmann D E, Krusemann P, Meerbur A, Müller P, Olbers D J, Richter K, Sell W, Walden H. 1973. Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP). Deutches Hydrographisches Institut, Hamburg. 95p.Google Scholar
  10. Hasselmann S, Hasselmann K, Allender J H, Barnett T P. 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15 (11): 1 378–1 39CrossRefGoogle Scholar
  11. Huang B G. 2009. Numerical simulation of waves in Bohai Sea and research on the influence of swells on wind waves. Ocean University of China, Qingdao, China. 67p. (in Chinese with English abstract)Google Scholar
  12. Khon V C, Mokhov I I, Pogarskiy F A, Babanin A, Dethloff K, Rinke A, Matthes H. 2014. Wave heights in the 21 st century Arctic Ocean simulated with a regional climate model. Geophysical Research Letters41 (8): 2 956–2 961,  https://doi.org/10.1002/2014GL059847.CrossRefGoogle Scholar
  13. Komen G J, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen P A E M. 1994. Dynamics and Modelling of Ocean Waves. Cambridge University Press, Cambridge, UK. 532p.CrossRefGoogle Scholar
  14. Komen G J, Hasselmann S, Hasselmann K. 1984. On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14 (8): 1 271–1 28CrossRefGoogle Scholar
  15. Li J K, Kohout A L, Shen H H. 2015. Comparison of wave propagation through ice covers in calm and storm conditions. Geophysical Research Letters42 (14): 5 935–5 941,  https://doi.org/10.1002/2015GL064715.CrossRefGoogle Scholar
  16. Liu A K, Holt B, Vachon P W. 1991. Wave propagation in the marginal ice zone: model predictions and comparisons with buoy and synthetic aperture radar data. Journal of Geophysical Research: Oceans96 (C3): 4 605–4 621,  https://doi.org/10.1029/90JC02267.CrossRefGoogle Scholar
  17. Liu A K, Mollo-Christensen E. 1988. Wave propagation in a solid ice pack. Journal of Physical Oceanography18 (11): 1 702–1 712.CrossRefGoogle Scholar
  18. Liu A K, Vachon P W, Peng C Y, Bhogal A S. 1992. Wave attenuation in the marginal ice zone during LIMEX. Atmosphere-Ocean, 30 (2): 192–206.CrossRefGoogle Scholar
  19. Lv X C, Yuan D K, Ma X D, Tao J H. 2014. Wave characteristics analysis in Bohai Sea based on ECMWF wind field. Ocean Engineering, 91: 159–171.CrossRefGoogle Scholar
  20. Meylan M H, Bennetts L G, Kohout A L. 2014. In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone. Geophysical Research Letters41 (14): 5 046–5 051,  https://doi.org/10.1002/2014GL060809.CrossRefGoogle Scholar
  21. Rogers W E, Thomson J, Shen H H, Doble M J, Wadhams P, Cheng S K. 2016. Dissipation of wind waves by pancake and frazil ice in the autumn Beaufort Sea. Journal of Geophysical Research: Oceans121 (11): 7 991–8 007,  https://doi.org/10.1002/2016JC012251.Google Scholar
  22. Serreze M C, Stroeve J. 2015. Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences373 (2045): 20140159.CrossRefGoogle Scholar
  23. Shi J, Wang P, Zhong Z, Zhang J. 2011. Comparison of ocean wave simulation with SWAN wave model using two kinds of computational grid in the Bohai Sea and the Yellow sea. Marine Forecasts28 (4): 48–57. (in Chinese with English abstract)Google Scholar
  24. Squire V A. 2007. Of ocean waves and sea-ice revisited. Cold Regions Science and Technology49 (2): 110–133,  https://doi.org/10.1016/j.coldregions.2007.04.007.CrossRefGoogle Scholar
  25. Stroeve J C, Serreze M C, Holland M M, Kay J E, Malanik J, Barrett A P. 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change110 (3–4): 1 005–1 027.CrossRefGoogle Scholar
  26. Tang M N, Liu Y, LI B H, Sui J P. 2012. Analysis of the sea ice long-term trend in the bohai sea and the northern yellow sea. Marine Forecasts29 (2): 45–49. (in Chinese with English abstract)Google Scholar
  27. The SWAN team. 2018. Swan Scientific And Technical Documentation Swan Cycle III version 41.20AB. Delft University of Technology. http://swanmodel.sourceforge.net/. Accessed on 2019.3.28.Google Scholar
  28. The WAMDI Group. 1988. The WAM model—a third generation ocean wave prediction model. Journal of Physical Oceanography, 18 (12): 1 775–1 810.CrossRefGoogle Scholar
  29. The WAVEWATCH-III Development Group. 2016. User manual and system documentation of WAVEWATCH III version 5.16. Tech Note 329 NOAA/ NWS/ NCEP/ MMAB College Park MD USA 326 pp.+ Appendices. https://polar.ncep.noaa.gov/waves/wavewatch/. Accessed on 2019.3.28.Google Scholar
  30. Thomson J, Ackley S, Girard-Ardhuin F, Ardhuin F, Babanin A, Boutin G, Brozena J, Cheng S K, Collins C, Doble M, Fairall C, Guest P, Gebhardt C, Gemmrich J, Graber H C, Holt B, Lehner S, Lund B, Meylan M H, Maksym T, Montiel F, Perrie W, Persson O, Rainville L, Rogers W E, Shen H, Shen H, Squire V, Stammerjohn S, Stopa J, Smith M M, Sutherland P, Wadhams P. 2018. Overview of the arctic sea state and boundary layer physics program. Journal of Geophysical Research: Oceans123 (12): 8 674–8 687,  https://doi.org/10.1002/2018jc013766.Google Scholar
  31. Thomson J, Rogers W E. 2014. Swell and sea in the emerging Arctic Ocean. Geophysical Research Letters41 (9): 3 136–3 140.CrossRefGoogle Scholar
  32. Tolman H L. 1991. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. Journal of Physical Oceanography21 (6): 782–797.CrossRefGoogle Scholar
  33. Wadhams P, Squire V A, Goodman D J, Cowan A M, Moore S C. 1988. The attenuation rates of ocean waves in the marginal ice zone. Journal of Geophysical Research: Oceans, 93 (C6): 6 799–6 818.CrossRefGoogle Scholar
  34. Wang R X, Shen H H. 2010. Gravity waves propagating into an ice-covered ocean: a viscoelastic model. Journal of Geophysical Research: Oceans115 (C6): C06024,  https://doi.org/10.1029/2009JC005591.CrossRefGoogle Scholar
  35. Wang Z F, Dong S, Li X, Soares C G. 2016. Assessments of wave energy in the Bohai Sea, China. Renewable Energy90: 145–156.CrossRefGoogle Scholar
  36. Wang Z F, Wu K J, Zhou L M, Wu L Y. 2012. Wave characteristics and extreme parameters in the Bohai Sea. China Ocean Engineering, 26 (2): 341–35CrossRefGoogle Scholar
  37. Yin B S, Yang D Z, Sha R N, Cheng M H. 2005. Improvement of different source function expressions in SWAN model for the Bohai Sea. Progress in Natural Science15 (8): 720–724.CrossRefGoogle Scholar
  38. Zhang Y J, Jin B F, Feng X. 2007. Response of the sea ice conditions in the Bohai Sea to global climate change in the last over half century. Marine Science Bulletin26 (6): 96–101. (in Chinese with English abstract)Google Scholar
  39. Zhao X, Shen H H, Cheng S K. 2015. Modeling ocean wave propagation under sea ice covers. Acta Mechanica Sinica31 (1): 1–15.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Che Yue
    • 1
  • Jingkai Li
    • 1
    Email author
  • Changlong Guan
    • 1
  • Xihu Lian
    • 2
  • Kejian Wu
    • 1
  1. 1.Key Laboratory of Physical OceanographyOcean University of ChinaQingdaoChina
  2. 2.North China Sea Marine Forecasting CenterMinistry of Natural Resources (MNR)QingdaoChina

Personalised recommendations