Advertisement

iTRAQ-based analysis of 17β-estradiol induced proteome in Chinese tongue sole Cynoglossus semilaevis

  • Ying Zhu
  • Yangzhen Li
  • Hailong Li
  • Lei Wang
  • Ning Zhang
  • Yang Liu
  • Liang Meng
  • Xiwen Xu
  • Zhongdian Dong
  • Min Wei
  • Hua Guo
  • Zhongkai Cui
  • Xihong Li
  • Changwei Shao
  • Wenteng XuEmail author
Article
  • 5 Downloads

Abstract

The phenomenon of sex dimorphism prevails among many fish species. It has attracted the general research interest due to its close relationship to fish growth and thus aquaculture productivity. In Chinese tongue sole ( Cynoglossus semilaevis ), 17β-estradiol (E2) can be used reportedly to induce the feminization of fish, although the detailed regulatory network remained elusive. We treated the tongue sole fry before sex diff erentiation with E2 (10 and 30 μg/L) to identify potential targets of E2 in Chinese tongue sole. The E2 treatment indeed induced genetic male fish sex-reversal to phenotypic female. Using an iTRAQ-based comparative proteomic analysis, 409 proteins that diff erentially expressed after E2 induction were identifi ed, including 259 up-regulated and 150 down-regulated proteins. Furthermore, 19 diff erentially expressed proteins identifi ed in the comparative proteomic analysis were selected to assess their transcription and eight of them exhibited the same tendency. Functions of the eight proteins included mainly nucleotide and protein binding. Interestingly, a far upstream element-binding protein 3-like isoform exhibited the signifi cant upregulation both at transcription and translation levels after E2 treatment. This work identifi ed a set of candidate proteins for E2 response and deepened our understanding of E2 regulatory mechanism.

Key word

Cynoglossus semilaevis 17β-estradiol sex reversal proteome iTRAQ analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We would like to thank Professor Deborah M Power for the critical comments and language polishing.

Supplementary material

343_2019_8222_MOESM1_ESM.xlsx (1010 kb)
Supplementary material, approximately 1011 KB.
343_2019_8222_MOESM2_ESM.xlsx (205 kb)
Supplementary material, approximately 206 KB.
343_2019_8222_MOESM3_ESM.xlsx (20 kb)
Supplementary material, approximately 20 KB.
343_2019_8222_MOESM4_ESM.docx (194 kb)
Supplementary material, approximately 195 KB.

References

  1. Baarends W M, Hoogerbrugge J W, Roest H P, Ooms M, Vreeburg J, Hoeijmakers J H J, Grootegoed J A. 1999. Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Developmental Biology, 207 (2): 322–333, https://doi.org/10.1006/dbio.1998.9155.CrossRefGoogle Scholar
  2. Beardmore J A, Mair G C, Lewis R I. 2001. Monosex male production in finfish as exemplified by tilapia: applications, problems, and prospects. Aquaculture, 197 (1–4): 283–301, https://doi.org/10.1016/S0044–8486(01)00590–7.CrossRefGoogle Scholar
  3. Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72 (1–2): 248–254, https://doi.org/10.1016/0003–2697(76)90527–3.CrossRefGoogle Scholar
  4. Casciola–Rosen L A, Miller D K, Anhalt G J, Rosen A. 1994. Specific cleavage of the 70–kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. The Journal of Biological Chemistry, 269 (49): 30 757–30 760.Google Scholar
  5. Chen S L, Ji X S, Shao C W, Li W L, Yang J F, Liang Z, Liao X L, Xu G B, Xu Y, Song W T. 2012. Induction of mitogynogenetic diploids and identification of WW superfemale using sex–specific SSR markers in half–smooth tongue sole (Cynoglossus semilaevis). Marine Biotechnology, 14 (1): 120–128, https://doi.org/10.1007/s10126–011–9395–2.CrossRefGoogle Scholar
  6. Chen S L, Li J, Deng S P, Tian Y S, Wang Q Y, Zhuang Z M, Sha Z X, Xu J Y. 2007. Isolation of female–specific AFLP markers and molecular identification of genetic sex in half–smooth tongue sole (Cynoglossus semilaevis). Marine Biotechnology, 9 (2): 273–280, https://doi. org/10.1007/s10126–006–6081–x.CrossRefGoogle Scholar
  7. Chen S L, Zhang G J, Shao C W, Huang Q F, Liu G, Zhang P, Song W T, An N, Chalopin D, Volff J N, Hong Y H, Li Q Y, Sha Z X, Zhou H L, Xie M S, Yu Q L, Liu Y, Xiang H, Wang N, Wu K, Yang C G, Zhou Q, Liao X L, Yang L F, Hu Q M, Zhang J L, Meng L, Jin L J, Tian Y S, Lian J M, Yang J F, Miao G D, Liu S S, Liang Z, Yan F, Li Y Z, Sun B, Zhang H, Zhang J, Zhu Y, Du M, Zhao Y F, Schartl M, Tang Q S, Wang J. 2014. Whole–genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nature Genetics, 46 (3): 253–260, https://doi.org/10.1038/ng.2890.CrossRefGoogle Scholar
  8. Choi C Y, Habibi H R. 2003. Molecular cloning of estrogen receptor α and expression pattern of estrogen receptor subtypes in male and female goldfish. Molecular and Cellular Endocrinology, 204 (1–2): 169–177, https://doi. org/10.1016/S0303–7207(02)00182–X.CrossRefGoogle Scholar
  9. Cholia R P, Nayyar H, Kumar R, Mantha A K. 2015. Understanding the multifaceted role of ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) and its altered behaviour in human diseases. Current Molecular Medicine, 15 (10): 932–943, https://doi.org/10.2174/1566524015666150921104804.CrossRefGoogle Scholar
  10. Cui Z K, Liu Y, Wang W W, Wang Q, Zhang N, Lin F, Wang N, Shao C W, Dong Z D, Li Y Z, Yang Y M, Hu M Z, Li H L, Gao F T, Wei Z F, Meng L, Liu Y, Wei M, Zhu Y, Guo H, Cheng C H K, Schartl M, Chen S L. 2017. Genome editing reveals dmrt1 as an essential male sex–determining gene in Chinese tongue sole (Cynoglossus semilaevis). Scientific Reports, 7: 42 213, https://doi.org/10.1038/srep42213.Google Scholar
  11. Felty Q. 2011. Proteomic 2D DIGE profiling of human vascular endothelial cells exposed to environmentally relevant concentration of endocrine disruptor PCB153 and physiological concentration of 17β–estradiol. Cell Biology and Toxicology, 27 (1): 49–68, https://doi.org/10.1007/s10565–010–9170–6.CrossRefGoogle Scholar
  12. Feswick A, Isaacs M, Biales A, Flick R W, Bencic D C, Wang R L, Vulpe C, Brown–Augustine M, Loguinov A, Falciani F, Antczak P, Herbert J, Brown L, Denslow N D, Kroll K J, Lavelle C, Dang V, Escalon L, Garcia–Reyero N, Martyniuk C J, Munkittrick K R. 2017. How consistent are we? Interlaboratory comparison study in fathead minnows using the model estrogen 17α–ethinylestradiol to develop recommendations for environmental transcriptomics. Environmental Toxicology and Chemistry, 36 (10): 2 614–2 623, https://doi.org/10.1002/etc.3799.CrossRefGoogle Scholar
  13. Frisca F, Colquhoun D, Goldshmit Y, Änkö M L, Pébay A, Kaslin J. 2016. Role of ectonucleotide pyrophosphatase/phosphodiesterase 2 in the midline axis formation of zebrafish. Scientific Reports, 6: 37 678, https://doi.org/10. 1038/srep37678.Google Scholar
  14. George S, Gubbins M, MacIntosh A, Reynolds W, Sabine V, Scott A, Thain J. 2004. A comparison of pollutant biomarker responses with transcriptional responses in European flounders (Platicthys flesus) subjected to estuarine pollution. Marine Environmental Research, 58 (2–5): 571–575, https://doi.org/10.1016/j.marenvres.2004.03.047.CrossRefGoogle Scholar
  15. Hall J M, Couse J F, Korach K S. 2001. The multifaceted mechanisms of estradiol and estrogen receptor signaling. The Journal of Biological Chemistry, 276 (40): 36 869–36 872, https://doi.org/10.1074/jbc.R100029200.CrossRefGoogle Scholar
  16. Han D, Haunerland N H, Williams T D. 2009. Variation in yolk precursor receptor mRNA expression is a key determinant of reproductive phenotype in the zebra finch (Taeniopygia guttata). Journal of Experimental Biology, 212 (9): 1 277–1 283, https://doi.org/10.1242/jeb.026906.CrossRefGoogle Scholar
  17. Hawkins M B, Thornton J W, Crews D, Skipper J K, Dotte A, Thomas P. 2000. Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts. Proceedings of the National Academy of Sciences of the United States of America, 97 (20): 10 751–10 756, https://doi.org/10.1073/pnas.97.20.10751.CrossRefGoogle Scholar
  18. Hock R, Furusawa T, Ueda T, Bustin M. 2007. HMG chromosomal proteins in development and disease. Trends in Cell Biology, 17 (2): 72–79, https://doi.org/10.1016/j. tcb.2006.12.001.CrossRefGoogle Scholar
  19. Hu Q M, Chen S L. 2013. Cloning, genomic structure and expression analysis of ubc9 in the course of development in the half–smooth tongue sole (Cynoglossus semilaevis). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 165 (3): 181–188, https://doi.org/10.1016/j.cbpb.2013.03.007.CrossRefGoogle Scholar
  20. Ibarz A, Pinto P I S, Power D M. 2013. Proteomic approach to skin regeneration in a marine teleost: modulation by oestradiol–17β. Marine Biotechnology (NY), 15 (6): 629–646, https://doi.org/10.1007/s10126–013–9513–4.CrossRefGoogle Scholar
  21. Jia W Y, Yao Z Y, Zhao J J, Guan Q B, Gao L. 2017. New perspectives of physiological and pathological functions of nucleolin (NCL). Life Sciences, 186: 1–10, https://doi. org/10.1016/j.lfs.2017.07.025.Google Scholar
  22. Khieokhajonkhet A, Kaneko G, Hirano Y, Wang L, Ushio H. 2016. Different effects of growth hormone and fasting on the induction patterns of two hormone–sensitive lipase genes in red seabream Pagrus major. General and Comparative Endocrinology, 236: 121–130, https://doi. org/10.1016/j.ygcen.2016.06.025.CrossRefGoogle Scholar
  23. Klein S L, Marriott I, Fish E N. 2015. Sex–based differences in immune function and responses to vaccination. Transactions of the Royal Society of Tropical Medicine and Hygiene, 109 (1): 9–15, https://doi.org/10.1093/trstmh/tru167.CrossRefGoogle Scholar
  24. Kobayashi H, Iwamatsu T. 2005. Sex reversal in the medaka Oryzias latipes by brief exposure of early embryos to estradiol–17β. Zoological Science, 22 (10): 1 163–1 167, https://doi.org/10.2108/zsj.22.1163.CrossRefGoogle Scholar
  25. Leelatanawit R, Sittikankeaw K, Yocawibun P, Klinbunga S, Roytrakul S, Aoki T, Hirono I, Menasveta P. 2009. Identification, characterization and expression of sexrelated genes in testes of the giant tiger shrimp Penaeus monodon. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 152 (1): 66–76, https://doi.org/10.1016/j.cbpa.2008.09.004.CrossRefGoogle Scholar
  26. Li H L, Xu W T, Zhang N, Shao C W, Zhu Y, Dong Z D, Wang N, Jia X D, Xu H, Chen S L. 2016. Two Figla homologues have disparate functions during sex differentiation in halfsmooth tongue sole (Cynoglossus semilaevis). Scientific Reports, 6: 28 219, https://doi.org/10.1038/srep28219.Google Scholar
  27. Li Z J, Yang L J, Wang J, Shi W C, Pawar R A, Liu Y M, Xu C G, Cong W H, Hu Q R, Lu T Y, Xia F, Guo W, Zhao M, Zhang Y Y. 2010. β–Actin is a useful internal control for tissue–specific gene expression studies using quantitative real–time PCR in the half–smooth tongue sole Cynoglossus semilaevis challenged with LPS or Vibrio anguillarum. Fish & Shellfish Immunology, 29 (1): 89–93, https://doi. org/10.1016/j.fsi.2010.02.021.Google Scholar
  28. Ma C H, Dong K W, Yu K L. 2000. cDNA cloning and expression of a novel estrogen receptor β–subtype in goldfish (Carassius auratus). Biochimica et Biophysica Acta (BBA)–Gene Structure and Expression, 1490 (1–2): 145–152, https://doi.org/10.1016/S0167–4781(99)00235–3.CrossRefGoogle Scholar
  29. Martyniuk C J, Kroll K J, Doperalski N J, Barber D S, Denslow N D. 2010. Environmentally relevant exposure to 17α–ethinylestradiol affects the telencephalic proteome of male fathead minnows. Aquatic Toxicology, 98 (4): 344–353, https://doi.org/10.1016/j.aquatox.2010.03.007.CrossRefGoogle Scholar
  30. Melamed P, Koh M, Preklathan P, Bei L, Hew C. 2002. Multiple mechanisms for Pitx–1 transactivation of a luteinizing hormone β subunit gene. The Journal of Biological Chemistry, 277: 26 200–26 207, https://doi. org/10.1074/jbc.M201605200.CrossRefGoogle Scholar
  31. Nagler J J, Cavileer T, Sullivan J, Cyr D G, Rexroad III C. 2007. The complete nuclear estrogen receptor family in the rainbow trout: discovery of the novel ERα2 and both ERβ isoforms. Gene, 392 (1–2): 164–173, https://doi. org/10.1016/j.gene.2006.12.030.CrossRefGoogle Scholar
  32. Nagler J J, Davis T L, Modi N, Vijayan M M, Schultz I. 2010. Intracellular, not membrane, estrogen receptors control vitellogenin synthesis in the rainbow trout. General and Comparative Endocrinology, 167 (1): 326–330, https://doi.org/10.1016/j.ygcen.2010.03.022.CrossRefGoogle Scholar
  33. Palin S L, McTernan P G, Anderson L A, Sturdee D W, Barnett A H, Kumar S. 2003. 17β–estradiol and anti–estrogen ICI: compound 182,780 regulate expression of lipoprotein lipase and hormone–sensitive lipase in isolated subcutaneous abdominal adipocytes. Metabolism, 52 (4): 383–388, https://doi.org/10.1053/meta.2003.50088.Google Scholar
  34. Pinto P I S, Estêvão M D, Power D M. 2014. Effects of estrogens and estrogenic disrupting compounds on fish mineralized tissues. Marine Drugs, 12 (8): 4 474–4 494, https://doi.org/10.3390/md12084474.CrossRefGoogle Scholar
  35. Schilling J, Nepomuceno A I, Planchart A, Yoder J A, Kelly R M, Muddiman D C, Daniels H V, Hiramatsu N, Reading B J. 2015. Machine learning reveals sex–specific 17β–estradiol–responsive expression patterns in white perch (Morone americana) plasma proteins. Proteomics, 15 (15): 2 678–2 690, https://doi.org/10.1002/pmic.201400606.CrossRefGoogle Scholar
  36. Shao C W, Bao B L, Xie Z Y, Chen X Y, Li B, Jia X D, Yao Q L, Ortí G, Li W H, Li X H, Hamre K, Xu J, Wang L, Chen F Y, Tian Y S, Schreiber A M, Wang N, Wei F, Zhang J L, Dong Z D, Gao L, Gai J W, Sakamoto T, Mo S D, Chen W J, Shi Q, Li H, Xiu Y J, Li Y Z, Xu W T, Shi Z Y, Zhang G J, Power D M, Wang Q Y, Schartl M, Chen S L. 2017. The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry. Nature Genetics, 49 (1): 119–124, https://doi.org/10.1038/ng.3732.CrossRefGoogle Scholar
  37. Shao C W, Li Q Y, Chen S L, Zhang P, Lian J M, Hu Q M, Sun B, Jin L J, Liu S S, Wang Z J, Zhao H M, Jin Z H, Liang Z, Li Y Z, Zheng Q M, Zhang Y, Wang J, Zhang G J. 2014. Epigenetic modification and inheritance in sexual reversal of fish. Genome Research, 24 (4): 604–615, https://doi. org/10.1101/gr.162172.113.CrossRefGoogle Scholar
  38. Sun A, Wang T Z, Wang N, Liu X F, Sha Z X, Chen S L. 2015. Establishment and characterization of an ovarian cell line from half–smooth tongue sole Cynoglossus semilaevis. Journal of Fish Biology, 86 (1): 46–59, https://doi.org/10.1111/jfb.12535.CrossRefGoogle Scholar
  39. Sun J, Yang Z, Xiao P Z, Liu Y, Ji H, Du Z Y, Chen L Q. 2017. Two isoforms of hormone–sensitive lipase b are generated by alternative exons usage and transcriptional regulation by insulin in grass carp (Ctenopharyngodon idella). Fish Physiology and Biochemistry, 43 (2): 539–547, https://doi. org/10.1007/s10695–016–0308–1.CrossRefGoogle Scholar
  40. Tang R Y, Dodd A, Lai D, McNabb W C, Love D R. 2007. Validation of zebrafish (Danio rerio) reference genes for quantitative real–time RT–PCR normalization. Acta Biochimica et Biophysica Sinica, 39 (5): 384–390, https://doi.org/10.1111/j.1745–7270.2007.00283.x.CrossRefGoogle Scholar
  41. Tewari M, Beidler D R, Dixit V M. 1995. CrmA–inhibitable cleavage of the 70–kDa protein component of the U1 small nuclear ribonucleoprotein during Fas–and tumor necrosis factor–induced apoptosis. The Journal of Biological Chemistry, 270 (32): 18 738–18 741, https://doi.org/10.1074/jbc.270.32.18738.CrossRefGoogle Scholar
  42. Thomas P. 2012. Rapid steroid hormone actions initiated at the cell surface and the receptors that mediate them with an emphasis on recent progress in fish models. General and Comparative Endocrinology, 175 (3): 367–383, https://doi.org/10.1016/j.ygcen.2011.11.032.CrossRefGoogle Scholar
  43. Wang D, Mao H L, Chen H X, Liu H Q, Gui J F. 2009. Isolation of Y–and X–linked SCAR markers in yellow catfish and application in the production of all–male populations. Animal Genetics, 40 (6): 978–981, https://doi.org/10.1111/j.1365–2052.2009.01941.x.CrossRefGoogle Scholar
  44. West K L, Ito Y, Birger Y, Postnikov Y, Shirakawa H, Bustin M. 2001. HMGN3a and HMGN3b, two protein isoforms with a tissue–specific expression pattern, expand the cellular repertoire of nucleosome–binding proteins. The Journal of Biological Chemistry, 276 (28): 25 959–25 969, https://doi.org/10.1074/jbc.M101692200.CrossRefGoogle Scholar
  45. Xu W T, Li H L, Dong Z D, Cui Z K, Zhang N, Meng L, Zhu Y, Liu Y, Li Y Z, Guo H, Ma J L, Wei Z F, Zhang N W, Yang Y M, Chen S L. 2016. Ubiquitin ligase gene neurl3 plays a role in spermatogenesis of half–smooth tongue sole (Cynoglossus semilaevis) by regulating testis protein ubiquitination. Gene, 592 (1): 215–220, https://doi.org/10. 1016/j.gene.2016.07.062.CrossRefGoogle Scholar
  46. Yaşar P, Ayaz G, Muyan M. 2016. Estradiol–Estrogen receptor α mediates the expression of the CXXC5 gene through the estrogen response element–dependent signaling pathway. Scientific Reports, 6: 37 808, https://doi.org/10.1038/srep37808.Google Scholar
  47. Yoneda M, Kurita Y, Kitagawa D, Ito M, Tomiyama T, Goto T, Takahashi K. 2007. Age validation and growth variability of Japanese flounder Paralichthys olivaceus offthe Pacific coast of northern Japan. Fisheries Science, 73 (3): 585–592, https://doi.org/10.1111/j.1444–2906.2007.01371.x.CrossRefGoogle Scholar
  48. Zhang B, Wang X L, Sha Z X, Yang C G, Liu S S, Wang N, Chen S L. 2011. Establishment and characterization of a testicular cell line from the half–smooth tongue sole, Cynoglossus semilaevis. International Journal of Biological Sciences, 7 (4): 452–459, https://doi.org/10. 7150/ijbs.7.452.CrossRefGoogle Scholar
  49. Zhang J, Chen Q M. 2012. Far upstream element binding protein 1: a commander of transcription, translation and beyond. Oncogene, 32 (24): 2 907–2 916, https://doi.org/10.1038/onc.2012.350.CrossRefGoogle Scholar
  50. Zhang X Y, Liu H J. 2009. Effects of 17 β–Estradiol on sex differentiation and growth in half–smooth tongue–sole (Cynoglossus semilaevis). Journal of Northeast Agricultural University, 40 (6): 67–72. (in Chinese with English abstract).Google Scholar
  51. Zhu Y, Hu Q M, Xu W T, Li H L, Guo H, Meng L, Wei M, Lu S, Shao C W, Wang N, Yang G P, Chen S L. 2017. Identification and analysis of the β–catenin1 gene in halfsmooth tongue sole (Cynoglossus semilaevis). PLoS One, 12 (5): e0176122, https://doi.org/10.1371/journal.pone. 0176122.CrossRefGoogle Scholar
  52. Zupanc G K H, Ilieş I, Sîrbulescu R F, Zupanc M M. 2014. Large–scale identification of proteins involved in the development of a sexually dimorphic behavior. Journal of Neurophysiology, 111 (8): 1 646–1 654, https://doi.org/10. 1152/jn.00750.2013.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ying Zhu
    • 1
    • 2
  • Yangzhen Li
    • 1
    • 2
  • Hailong Li
    • 1
    • 2
    • 3
  • Lei Wang
    • 1
    • 2
  • Ning Zhang
    • 1
    • 2
  • Yang Liu
    • 1
    • 2
  • Liang Meng
    • 1
    • 2
  • Xiwen Xu
    • 1
    • 2
  • Zhongdian Dong
    • 1
    • 2
  • Min Wei
    • 1
    • 2
  • Hua Guo
    • 1
    • 2
  • Zhongkai Cui
    • 1
    • 2
  • Xihong Li
    • 1
    • 2
  • Changwei Shao
    • 1
    • 2
  • Wenteng Xu
    • 1
    • 2
    Email author
  1. 1.Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
  2. 2.Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Research Institute of Metabolic DiseaseQingdao UniversityQingdaoChina

Personalised recommendations