Expression, purifi cation, and subcellular localization of phospholipase C in Dunaliella salina

  • Yuting Cong
  • Yuan Wang
  • Jinrong Yue
  • Zhenyu Xing
  • Xiangnan Gao
  • Xiaojie ChaiEmail author


Plants possess eff ective mechanisms to respond quickly to the external environment. Rapid activation of phosphatidylinositol-specifi c phospholipase C (PLC) enzymes occurs after a stimulus. The PLC in Dunaliella salina plays important roles in growth and stress responses. However, the molecular basis of PLC action in D. salina remains little understood. To gain insight into the potential biological functions of this enzyme, we cloned a phospholipase C gene from D. salina in a previous study, named DsPLC (GenBank No. KF573428). Here, we present the prokaryotic expression, purifi cation, and characterization of the DsPLC gene. The entire coding region of DsPLC was inserted into an expression vector pET32a, and the DsPLC gene was successfully expressed in Escherichia coli. The DsPLC protein was purifi ed and identifi ed using a polyclonal antibody and western blotting. Expressing DsPLC fused with a green fl uorescent protein (GFP) in onion showed that DsPLC-GFP was localized to the intracellular membrane. Quantitative real-time PCR analysis revealed that the relative expression of the DsPLC gene was induced signifi cantly by 3.0-mol/L NaCl at 4 h. Our results support the importance of PLC enzymes in plant defense signaling. This study provides a basis for further functional studies of the DsPLC gene and for additional analysis of the potential roles of PLC enzymes in response to abiotic stress.

Key word

Dunaliella salina DsPLC gene prokaryotic expression subcellular localization salt stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abd–El–Haliem A M, Vossen J H, van Zeijl A, Dezhsetan S, Testerink C, Seidl M F, Beck M, Strutt J, Robatzek S, Joosten M H A J. 2016. Biochemical characterization of the tomato phosphatidylinositol–specific phospholipase C (PI–PLC) family and its role in plant immunity. Biochimica et Biophysica Acta (BBA)–Molecular and Cell Biology of Lipids, 1861 (9): 1 365–1 378, bbalip.2016.01.017.CrossRefGoogle Scholar
  2. Arroussi HE, Benhima R, Elbaouchi A, Sijilmassi B, Mernissi NE, Aafsar A, Meftah–Kadmiri I, Bendaou N, Smouni A. 2018. Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). Journal of Applied Phycology, 30 (5): 2929–2941.–017–1382–1.CrossRefGoogle Scholar
  3. Arz M C, Grambow H J. 1994. Polyphosphoinositide phospholipase C and evidence for inositol–phosphatehydrolysing activities in the plasma–membrane fraction from light–grown wheat (Triticum aestivum L.) leaves. Planta, 195 (1): 57–62, Scholar
  4. Belhaj D, Athmouni K, Frikha D, Kallel M, El Feki A, Maalej S, Zhou J L, Ayadi H. 2017. Biochemical and physiological responses of halophilic nanophytoplankton (Dunaliella salina) from exposure to xeno–estrogen 17α–ethinylestradiol. Environmental Science and Pollution Research, 24 (8): 7 392–7 402, 1007/s11356–017–8415–9.CrossRefGoogle Scholar
  5. Cerminati S, Eberhardt F, Elena C E, Peirú S, Castelli M E, Menzella H G. 2017. Development of a highly efficient oil degumming process using a novel phosphatidylinositolspecific phospholipase C enzyme. Applied Microbiology and Biotechnology, 101 (11): 4 471–4 479, https://doi. org/10.1007/s00253–017–8201–0.CrossRefGoogle Scholar
  6. Chen H, Lao Y M, Jiang J G. 2011. Effects of salinities on the gene expression of a (NAD +)–dependent glycerol–3–phosphate dehydrogenase in Dunaliella salina. Science of the Total Environment, 409 (7): 1 291–1 297, https://doi. org/10.1016/j.scitotenv.2010.12.038.CrossRefGoogle Scholar
  7. Allah E F, Hu X Y, Jia A Q. 2016. The role of nitric oxide signalling in response to salt stress in Chlamydomonas reinhardtii. Planta, 244 (3): 651–669,–016–2528–0.CrossRefGoogle Scholar
  8. Cui L Q, Chai Y R, Li J, Liu H T, Zhang L, Xue L X. 2010. Identification of a glucose–6–phosphate isomerase involved in adaptation to salt stress of Dunaliella salina. Journal of Applied Phycology, 22 (5): 563–568,–009–9494–x.CrossRefGoogle Scholar
  9. Einspahr K J, Peeler T C, Thompson G A. 1989. Phosphatidylinositol 4, 5–bisphosphate phospholipase C and phosphomonoesterase in Dunaliella salina membranes. Plant Physiology, 90 (3): 1 115–1 120, Scholar
  10. Fang L, Qi S Y, Xu Z Y, Wang W, He J, Chen X, Liu J H. 2017. De novo transcriptomic profiling of Dunaliella salina reveals concordant flows of glycerol metabolic pathways upon reciprocal salinity changes. Algal Research, 23: 135–149, Scholar
  11. Gong W F, Zhao L N, Hu B, Chen X W, Zhang F, Zhu Z M, Chen D F. 2014. Identifying novel salt–tolerant genes from Dunaliella salina using a Haematococcus pluvialis expression system. Plant Cell, Tissue and Organ Culture, 117 (1): 113–124,–014–0425–4.CrossRefGoogle Scholar
  12. Ha K S, Thompson G A. 1991. Diacylglycerol metabolism in the green alga Dunaliella salina under osmotic stress: possible role of diacylglycerols in phospholipase C–mediated signal transduction. Plant Physiology, 97 (3): 921–927, Scholar
  13. Han D M, Chai X J, Wang Y Y, Liu S C, Yue W J. 2014. Cloning and expression analysis of DsPLC under salt stress from Dunaliella salina. Journal of Nuclear Agricultural Sciences, 28 (10): 1 773–1 780, https://doi. org/10.11869/j.issn.100–8551.2014.10.1773. (in Chinese with English abstract)Google Scholar
  14. He Q H, Qiao D R, Bai L H, Zhang Q L, Yang W G, Li Q, Cao Y. 2007. Cloning and characterization of a plastidic glycerol 3–phosphate dehydrogenase cDNA from Dunaliella salina. Journal of Plant Physiology, 164 (2): 214–220, Scholar
  15. Hirayama T, Ohto C, Mizoguchi T, Shinozaki K. 1995. A gene encoding a phosphatidylinositol–specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 92 (9): 3 903–3 907, Scholar
  16. Hong Y Y, Zhao J, Guo L, Kim S C, Deng X J, Wang G L, Zhang G Y, Li M Y, Wang X M. 2016. Plant phospholipases D and C and their diverse functions in stress responses. Progress in Lipid Research, 62: 55–74, https://doi. org/10.1016/j.plipres.2016.01.002.CrossRefGoogle Scholar
  17. Jia Y L, Xue L X, Liu H T, Li J. 2009. Characterization of the glyceraldehyde–3–phosphate dehydrogenase (GAPDH) gene from the halotolerant alga Dunaliella salina and inhibition of its expression by RNAi. Current Microbiology, 58 (5): 426–431,–008–9333–3.CrossRefGoogle Scholar
  18. Kanehara K, Yu C Y, Cho Y, Cheong W F, Torta F, Shui G H, Wenk M R, Nakamura Y. 2015. Arabidopsis AtPLC2 Is a primary phosphoinositide–specific phospholipase C in phosphoinositide metabolism and the endoplasmic reticulum stress response. PLoS Genetics, 11 (9): e1005511, Scholar
  19. Katz A, Avron M. 1985. Determination of intracellular osmotic volume and sodium concentration in dunaliella. Plant Physiology, 78 (4): 817–820, 78.4.817.CrossRefGoogle Scholar
  20. Katz A, Waridel P, Shevchenko A, Pick U. 2007. Salt–induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano–LC–MS/MS analysis. Molecular & Cellular Proteomics, 6 (9): 1 459–1 472,–MCP200.CrossRefGoogle Scholar
  21. Kim Y J, Kim J E, Lee J H, Lee M H, Jung H W, Bahk Y Y, Hwang B K, Hwang I, Kim W T. 2004. The Vr–PLC3 gene encodes a putative plasma membrane–localized phosphoinositide–specific phospholipase C whose expression is induced by abiotic stress in mung bean (Vigna radiata L.). FEBS Letters, 556 (1–3): 127–136,–5793(03)01388–7.CrossRefGoogle Scholar
  22. Kocourková D, Krčková Z, Pejchar P, Veselková Š, Valentová O, Wimalasekera R, Scherer G F E, Martinec J. 2011. The phosphatidylcholine–hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. Journal of Experimental Botany, 62 (11): 3 753–3 763, Scholar
  23. Lei G P, Qiao D R, Bai L H, Xu H, Cao Y. 2008. Isolation and characterization of a mitogen–activated protein kinase gene in the halotolerant alga Dunaliella salina. Journal of Applied Phycology, 20 (1): 13–17,–007–9175–6.CrossRefGoogle Scholar
  24. Li L, Wang F W, Yan P W, Jing W, Zhang C X, Kudla J, Zhang W H. 2017. A phosphoinositide–specific phospholipase C pathway elicits stress–induced Ca 2+ signals and confers salt tolerance to rice. New Phytologist, 214 (3): 1 172–1 187, Scholar
  25. Liska A J, Shevchenko A, Pick U, Katz A. 2004. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homologybased proteomics. Plant Physiology, 136 (1): 2 806–2 817, Scholar
  26. Liu J L, Zhang D X, Hong L. 2015. Isolation, characterization and functional annotation of the salt tolerance genes through screening the high–quality cDNA library of the halophytic green alga Dunaliella salina (Chlorophyta). Annals of Microbiology, 65 (3): 1 293–1 302, https://doi. org/10.1007/s13213–014–0967–z.CrossRefGoogle Scholar
  27. Lv H X, Cui X G, Tan Z L, Jia S R. 2017. Analysis of metabolic responses of Dunaliella salina to phosphorus deprivation. Journal of Applied Phycology, 29 (3): 1 251–1 260,–017–1059–9.CrossRefGoogle Scholar
  28. Oren A. 2005. A hundred years of Dunaliella research: 1905–2005. Saline Systems, 1: 2,–1448–1–2.Google Scholar
  29. Peters C, Kim S C, Devaiah S, Li M Y, Wang X M. 2014. Nonspecific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant, Cell & Environment, 37 (9): 2 002–2 013, Scholar
  30. Punta M, Coggill P C, Eberhardt R Y, Mistry J, Tate J, Boursnell C, Pang N Z, Forslund K, Ceric G, Clements J, Clements A, Clements L, Clements E L L, Clements S R, Clements A, Clements R D. 2012. The Pfam protein families database. Nucleic Acids Research, 40 (D1): D290–D301, Scholar
  31. Ramos A A, Polle J, Tran D, Cushman J C, Jin E S, Varela J C. 2011. The unicellular green alga Dunaliella salina Teod. as a model for abiotic stress tolerance: genetic advances and future perspectives. Algae, 26 (1): 3–20, https://doi. org/10.4490/algae.2011.26.1.003.CrossRefGoogle Scholar
  32. Shi J R, Gonzales R A, Bhattacharyya M K. 1995. Characterization of a plasma membrane–associated phosphoinositide–specific phospholipase C from soybean. The Plant Journal, 8 (3): 381–390,–313X.1995.08030381.x.CrossRefGoogle Scholar
  33. Singh A, Bhatnagar N, Pandey A, Pandey G K. 2015. Plant phospholipase C family: regulation and functional role in lipid signaling. Cell Calcium, 58 (2): 139–146, https://doi. org/10.1016/j.ceca.2015.04.003.CrossRefGoogle Scholar
  34. Tammam AA, Fakhry EM, El–Sheekh M. 2011. Effect of salt stress on antioxidant system and the metabolism of the reactive oxygen species in Dunaliella salina and Dunaliella tertiolecta. African Journal of Biotechnology. 10(19): 3 795–3 808. Scholar
  35. Tripathy M K, Tyagi W, Goswami M, Kaul T, Singla–Pareek S L, Deswal R, Reddy M K, Sopory S K. 2012. Characterization and functional validation of tobacco PLC delta for abiotic stress tolerance. Plant Molecular Biology Reporter, 30 (2): 488–497,–011–0360–z.CrossRefGoogle Scholar
  36. Xie H, Xu P R, Jia Y L, Li J, Lu Y M, Xue L X. 2007. Cloning and heterologous expression of nitrate reductase genes from Dunaliella salina. Journal of Applied Phycology, 19 (5): 497–504,–007–9162–y.CrossRefGoogle Scholar
  37. Xu X J, Cao Z X, Liu G Q, Bhattacharrya M K, Ren D T. 2004. Cloning and expression of AtPLC6, a gene encoding a phosphatidylinositol–specific phospholipase C in Arabidopsis thaliana. Chinese Science Bulletin, 49 (6): 567–573, Scholar
  38. Zhai S M, Sui Z H, Yang A F, Zhang J R. 2005. Characterization of a novel phosphoinositide–specific phospholipase C from Zea mays and its expression in Escherichia coli. Biotechnology Letters, 27 (11): 799–804, https://doi. org/10.1007/s10529–005–5802–y.CrossRefGoogle Scholar
  39. Zhang J W, Zhang Z B, Zhu D, Guan Y, Shi D Y, Chen Y J, Li R F, Wang H Z, Wei J H. 2015. Expression and initial characterization of a phosphoinositide–specific phospholipase c from Populus tomentosa. Journal of Plant Biochemistry and Biotechnology, 24 (3): 338–346,–014–0279–1.CrossRefGoogle Scholar
  40. Zhang X W, Cao S N, Li Y X, Mou S L, Xu D, Fan X, Ye N H. 2012. expression of three putative early light–induced genes under different stress conditions in the green alga Ulva linza. Plant Molecular Biology Reporter, 30 (4): 940–948,–011–0411–5.Google Scholar
  41. Zhao L N, Gong W F, Chen X W, Chen D F. 2013. Characterization of genes and enzymes in Dunaliella salina involved in glycerol metabolism in response to salt changes. Phycological Research, 61 (1): 37–45,–1835.2012.00669.x.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuting Cong
    • 1
  • Yuan Wang
    • 1
  • Jinrong Yue
    • 1
  • Zhenyu Xing
    • 1
  • Xiangnan Gao
    • 1
  • Xiaojie Chai
    • 1
    Email author
  1. 1.Key Laboratory of Hydrobiology in Liaoning Province, College of Fisheries and Life ScienceDalian Ocean UniversityDalianChina

Personalised recommendations