Advertisement

Photobehaviors of the calanoid copepod Calanus sinicus from the Yellow Sea to visible and UV–B radiation as a function of wavelength and intensity

  • Zhencheng Tao
  • Yanqing Wang
  • Junjian Wang
  • Mengtan LiuEmail author
  • Wuchang ZhangEmail author
Article
  • 5 Downloads

Abstract

The effects of wavelength–specific visible light, white light, and ultraviolet–B (UV–B, 280–315 nm) on selected behaviors, grazing rate, spawning rate, and hatching rate of the marine copepod Calanus sinicus collected from the Yellow Sea were studied. Calanus sinicus placed in a partitioned experimental system responded positively phototaxis to blue–cyan and yellow light but negatively to orange light and UV-B. No obvious dodge activity was found among C. sinicus irradiated with <0.005 mW/cm2 UV–B. Under 0.20, 0.30 and 0.50 mW/cm2 UV–B radiation, the lethal half times of individuals were 30.47, 2.86, and 1.96 h, respectively. Grazing of C. sinicus was restrained at >0.10 mW/cm2 UV–B, whereas yellow–red light stimulated grazing. Egg production rate was highest at a white–light intensity of 1.58 mW/cm2, with an average rate of 10.04 eggs/(female·d). These results are consistent with the observed phenomenon that C. sinicus in the Yellow Sea mostly spawn near dawn. Our results indicate that light intensity and spectrum are important factors affecting the diel vertical migration of C. sinicus under natural conditions in the Yellow Sea.

Keyword

Calanus sinicus light phototaxis grazing reproduction ultraviolet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

We thank the crew of the R/V Beidou for the assistance in zooplankton sampling during the field survey.

References

  1. Anon. 1977. Study on plankton in China Seas. In: Anon ed. Scientific Reports of “Comprehensive Oceanography Expedition in China Seas”, Ocean Res. Off. Press, Tianjun, 8: 1–159. (in Chinese)Google Scholar
  2. Araseth K A, Schram T A. 1999. Wavelength–specific behaviour in Lepeophtheirus salmonis and Calanus finmarchicus to ultraviolet and visible light in laboratory experiments (Crustacea: Copepoda). Marine Ecology Progress Series, 186: 211–217.CrossRefGoogle Scholar
  3. Atkinson A, Ward P, Murphy E J. 1996. Diel periodicity of subantarctic copepods: relationships between vertical migration, gut fullness and gut evacuation rate. Journal of Plankton Research, 18(8): 1 387–1 405.CrossRefGoogle Scholar
  4. Boden B P, Kampa E M. 1967. The influence of natural light on the vertical migrations of an animal community in the sea. Symposia of the Zoological Society of London, 19: 15–26.Google Scholar
  5. Buchanan C, Haney J F. 1980. Vertical migration of zooplankton in the Arctic. A test of the environmental controls. In: Kerfoot W C ed. Evolution and ecology of Zooplankton communities. New Hampshire: University Press of New England, 3: 66–79.Google Scholar
  6. Chen Q C. 1964. A study of ratio and the breeding periods, variation in sex in size of Calanus sinicus brodsky. Oceanologia et Limnologia Sinica, 6(3): 272–287. (in Chinese with English Abstract)Google Scholar
  7. Clarke G L. 1933. Diurnal migration of plankton in the Gulf of Maine and its correlation with changes in submarine irradiation. Biological Bulletin, 65(3): 402–436.CrossRefGoogle Scholar
  8. Cullen J J, Neale P J. 1994. Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosynthesis Research, 39(3): 303–320.CrossRefGoogle Scholar
  9. Daan N, Ringelberg J. 1969. Further studies on the positive and negative phototactic reaction of Daphnia magna Straus. Netherlands Journal of Zoology, 19(4): 525–540.CrossRefGoogle Scholar
  10. Dey D B, Damkaer D M, Heron G A. 1988. UV–B dose/doserate responses of seasonally abundant copepods of Puget Sound. Oecologia, 76(3): 321–329.CrossRefGoogle Scholar
  11. Ewald W F. 1910. Über Orientierung, Lokomotion und Lichtreaktionen einiger Cladoceren und deren Bedeutung für die Theorie der Tropismen. Biologisches Zentralblatt, 30: 1–16.Google Scholar
  12. Farquhar G D, Roderick M L. 2003. Atmospheric science: Pinatubo, diffuse light, and the carbon cycle. Science, 299(5615): 1 997–1 998.CrossRefGoogle Scholar
  13. Forward R B Jr. 1988. Diel vertical migration: zooplankton photobiology and behaviour. Oceanography and Marine Biology, An Annual Review, 26: 361–393.Google Scholar
  14. Frost B W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnology and Oceanography, 17(6): 805–815.CrossRefGoogle Scholar
  15. Haney J F, Craggy A, Kimball K, Weeks F. 1990. Light control of evening vertical migrations by Chaoborus punctipennis larvae. Limnology and Oceanography, 35(5): 1 068–1 078.CrossRefGoogle Scholar
  16. Huang C, Uye S, Onbé T. 1993. Geographic distribution, seasonal life cycle, biomass and production of a planktonic copepod Calarms sinicus in the inland Sea of Japan and its neighboring Pacific Ocean. Journal of Plankton Research, 15(11): 1 229–1 246.CrossRefGoogle Scholar
  17. Jékely G, Colombelli J, Hausen H, Guy K, Stelzer E, Nédélec F, Arendt D. 2008. Mechanism of phototaxis in marine zooplankton. Nature, 456(7220): 395–399.CrossRefGoogle Scholar
  18. Jerlov N G. 1950. Ultra–violet radiation in the sea. Nature, 166(4211): 111–112.CrossRefGoogle Scholar
  19. Karanas J J, Van Dyke H, Worrest R C. 1979. Midultraviolet (UV–B) sensitivity of Acartia clausii Giesbrecht (Copepoda). Limnology and Oceanography, 24(6): 1 104–1 116.CrossRefGoogle Scholar
  20. Kerr J B, McElroy C T. 1993. Evidence for large upward trends of ultraviolet–B radiation linked to ozone depletion. Science, 262(5136): 1 032–1 034.CrossRefGoogle Scholar
  21. Kidachi T. 1979a. Systematics of Calanus in the Japanese waters, with special reference to morphological differentiations of Calanus in Sagami Bay, part 1. Aquabiology, 2. 9–15. (in Japanese)Google Scholar
  22. Kidachi T. 1979b. Systematics of Calanus in the Japanese waters, with special reference to morphological differentiations of Calanus in Sagami Bay, part 2. Aquabiology, 3. 25–31. (In Japanese)Google Scholar
  23. Klugh A B. 1929. The effect of the ultra–violet component of sunlight on certain marine organisms. Canadian Journal of Research, 1(1): 100–109.Google Scholar
  24. Leech D M, Williamson C E. 2001. In situ exposure to ultraviolet radiation alters the depth distribution of Daphnia. Limnology and Oceanography, 46(2): 416–420.CrossRefGoogle Scholar
  25. Li J, Sun S, Li C L, Zhang Z, Tao Z C. 2006. Effects of single and mixed diatom diets on the reproduction of copepod Calanus sinicus. Acta Hydrochimica et Hydrobiologica, 34 (1–2): 117–125.CrossRefGoogle Scholar
  26. Lin Y S, Li S. 1986. Laboratory survey on egg production of marine planktonic copepod Calanus sinicus in Xiamen Harbour. Journal of Xiamen University (Natural science), 25(1): 107–112. (in Chinese with English Abstract)Google Scholar
  27. Madronich S, Mckenzie R L, Caldwell M, Bjorn L O. 1995. Changes in ultraviolet–radiation reaching the Earth’s surface. Environmental Effects of Stratospheric Ozone Depletion, 1994 Update.Google Scholar
  28. Mostajir B, Demers S, De Mora S D, Belzile C, Chanut J P, Gosselin M, Roy S, Villegas P Z, Fauchot J, Bouchard J, Bird D, Monfort P, Levasseur M. 1999. Experimental test of the effect of ultraviolet–B radiation in a planktonic community. Limnology and Oceanography, 44(3): 586–596.CrossRefGoogle Scholar
  29. Piazena H, Perez–Rodrigues E, Häder D P, Lopez–Figueroa F. 2002. Penetration of solar radiation into the water column of the central subtropical Atlantic ocean–optical properties and possible biological consequences. Deep Sea Research Part II: Topical Studies in Oceanography, 49(17): 3 513–3 528.CrossRefGoogle Scholar
  30. Rhode S C, Pawlowski M, Tollrian R. 2001. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature, 412(6842): 69–72.CrossRefGoogle Scholar
  31. Ringelberg J. 1964. The positively phototactic reaction of Daphnia magna Straus: a contribution to the understanding of diurnal vertical migration. Netherlands Journal of Sea Research, 2(3): 319–406.CrossRefGoogle Scholar
  32. Ringelberg J. 1999. The photobehaviour of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biological Reviews of the Cambridge Philosophical Society, 74(4): 397–423.CrossRefGoogle Scholar
  33. Russell F S. 1926. The vertical distribution of marine macroplankton. IV. The apparent importance of light intensity as a controlling factor in the behaviour of certain species in the Plymouth area. Journal of the Marine Biological Association of the UK, 14: 415–440.Google Scholar
  34. Russell F S. 1934. The vertical distribution of marine macroplankton. 12. Some observations on the vertical distribution of Calanus finmarchicus in relation to light intensity. Journal of the Marine Biological Association of the UK, 19: 569–584.CrossRefGoogle Scholar
  35. Schulyer Q, Sullivan K B. 1997. Light responses and diel migration of scyphomedusa Chrysaora quinquecirrha in mesocosms. Journal of Plankton Research, 19(10): 1 417–1 428.CrossRefGoogle Scholar
  36. Schulz H. 1928. Über die Bedeutung des Lichtes im Leben niederer Krebse. Zeitschrift für Vergleichende Physiologie, 7(3): 488–552.CrossRefGoogle Scholar
  37. Scott L C. 1995. Survival and sex ratios of the intertidal copepod, Tigriopus californicus, following ultraviolet–B (290–320 nm) radiation exposure. Marine Biology, 123(4): 799–804.CrossRefGoogle Scholar
  38. Smith K C, Macagno E R. 1990. UV photoreceptors in the compound eye of Daphnia magna (Crustacea, Branchiopoda). A fourth spectral class in single ommatidia. Journal of Comparative Physiology A, 166(5): 597–606.Google Scholar
  39. Smith R C, Prézelin B B, Baker K S, Bidigare R R, Boucher N P, Coley T, Karentz D, MacIntyre S, Matlick H, Menzies D. 1992. Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science, 255(5047): 952–959.CrossRefGoogle Scholar
  40. Speekmann C L, Bollens S M, Avent S R. 2000. The effect of ultraviolet radiation on the vertical distribution and mortality of estuarine zooplankton. Journal of Plankton Research, 22(12): 2 325–2 350.CrossRefGoogle Scholar
  41. Stearns D E, Forward R B. 1984. Photosensitivity of the calanoid copepod Acartia tonsa. Marine Biology, 82(1): 85–89.CrossRefGoogle Scholar
  42. Storz U C, Paul R J. 1998. Phototaxis in water fleas (Daphnia magna) is differently influenced by visible and UV light. Journal of Comparative Physiology, 183(6): 709–717.CrossRefGoogle Scholar
  43. Strom S L. 2001. Light–aided digestion, grazing and growth in herbivorous protists. Aquatic Microbial Ecology, 23: 253–261.CrossRefGoogle Scholar
  44. Sun S, Wang R, Zhang G T, Yang B, Ji P, Zhang F. 2002. A preliminary study on the over–summer strategy of Calanus sinicus in the Yellow Sea. Oceanol. Limnol. Sin., special issue: Zooplankton Population Dynamics: 92–99. (in Chinese with English Abstract)Google Scholar
  45. Sunda W G, Huntsman S A. 1997. Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature, 390(6658): 389–392.CrossRefGoogle Scholar
  46. Sweatt A J, Forward R. 1985. Spectral sensitivity of the chaetognath Sagitta hispida Conant. Biological Bulletin, 168(1): 32–38.CrossRefGoogle Scholar
  47. Tao Z C, Zhang W C, Sun S. 2004. The wave–specific influence of visible and ultraviolet light on zooplankton behaviour. Marine Sciences, 28(9): 56–61. (in Chinese with English abstract)Google Scholar
  48. Uye S, Huang C, Onbe T. 1990. Ontogenetic diel vertical migration of the planktonic copepod Calanussinicus in the Inland Sea of Japan. Marine Biology, 104(3): 389–396.CrossRefGoogle Scholar
  49. Uye S, Huang C, Onbe T. 1992. Ontogenetic diel vertical migration of the planktonic copepod Calanus sinicus in the Inland Sea of Japan. Marine Biology, 113(3): 391–400.CrossRefGoogle Scholar
  50. Uye S. 1986. Impact of copepod grazing on the red–tide flagellate Chattonella antiqua. Marine Biology, 92(1): 35–43.CrossRefGoogle Scholar
  51. Vallina S M, Simó R. 2007. Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science, 315(5811): 506–508.CrossRefGoogle Scholar
  52. Wang R, Li C L, Wang K, Zhang W C. 1998. Feeding activities of zooplankton in the Bohai Sea. Fisheries Oceanography, 7 (3–4): 265–271.CrossRefGoogle Scholar
  53. Wang R, Zuo T, Wang K. 2003. The Yellow Sea cold bottom water–an oversummering site for Calanus sinicus (Copepoda, Crustacea). Journal of Plankton Research, 25(2): 169–183.CrossRefGoogle Scholar
  54. Wang S W, Li C L, Sun S, Ning X R, Zhang W P. 2009. Spring and autumn reproduction of Calanus sinicus in the Yellow Sea. Marine Ecology Progress, 379(1): 123–133.CrossRefGoogle Scholar
  55. Wang X M, Tang J W, Song Q J, Ding J, Ma C F. 2006. The statistic inversion algorithms and spectral relations of total absorption coefficients for the Huanghai Sea and the East China Sea. Oceanologia et Limnologia Sinica, 37(3): 256–263. (in Chinese with English abstract)Google Scholar
  56. Williamson C E, Zagarese H E, Schulze P C, Hargreaves B R, Seva J. 1994. The impact of short–term exposure to UV–B radiation on zooplankton communities in north temperate lakes. Journal of Plankton Research, 16(3): 205–218.CrossRefGoogle Scholar
  57. Zagarese H E, Feldman M, Williamson C E. 1997. UV–Binduced damage and photoreactivation in three species of Boeckella (Copepoda, Calanoida). Journal of Plankton Research, 19(3): 357–367.CrossRefGoogle Scholar
  58. Zhang F, Sun S, Zhang G T. 2002a. Preliminary study on egglaying and hatching of Calanus sinicus (Copepoda: Calanoida) in the laboratory. Oceanol. Limnol. Sin., special issue: Zooplankton Population Dynamics: 10–18. (in Chinese with English abstract)Google Scholar
  59. Zhang G T, Sun S, Sun S. 2002b. Effects of diel spawning rhythm and temperature on egg production and hatching success on Calanus sinicus. Oceanol. Limnol. Sin., special issue: Zooplankton Population Dynamics: 71–77. (in Chinese with English abstract)Google Scholar
  60. Zhang G T, Sun S, Zhang F. 2005. Seasonal variation of reproduction rates and body size of Calanus sinicus in the Southern Yellow Sea, China. Journal of Plankton Research, 27(2): 135–143.CrossRefGoogle Scholar
  61. Zhang W C, Wang R. 2000. Effect of concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus sinicus. Acta Oceanologica Sinica, 22(6): 88–94. (in Chinese with English abstract)Google Scholar
  62. Zheng X Y, Zheng Z. 1989. Study on the relationship between mandibular edge and feeding mechanism of Copepoda. Oceanologia et Limnologia Sinica, 20(4): 308–313. (in Chinese with English Abstract)Google Scholar
  63. Zuo T, Wang R, Wang K, Gao S W. 2004. Vertical distribution and diurnal migration of zooplankton in the southern Yellow Sea in summer. Acta Ecologica Sinica, 24(3): 524–530. (in Chinese with English abstract)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Marine Ecology and Environmental Sciences, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Laboratory for Marine Ecology and Environmental ScienceQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Jiaozhou Bay Marine Ecosystem Research StationChinese Academy of SciencesQingdaoChina
  5. 5.Center for Ocean Mega–ScienceChinese Academy of SciencesQingdaoChina
  6. 6.Department of Engineering and Technology, Institute of OceanologyChinese Academy of SciencesQingdaoChina

Personalised recommendations