Advertisement

Preparation of pure gum raw materials-low brown algae application

  • Mengfei Wan
  • Zhongdong LiuEmail author
  • Yongfu Chen
  • Caiyuan Lu
  • Kechang Li
  • Fahe Wang
  • Xiaomei Wang
  • Boxiang Liu
Article
  • 11 Downloads

Abstract

Octenylsuccinate starch ester, also called pure gum, is non-toxic and odourless modified starch which is widely used in many food fields. This study synthesized pure gum in a reaction kettle using the low molecular weight trehalose and octenyl succinic acid. An orthogonal test was carried out to find how the reaction factors affect the synthetization of octenylsuccinic acid polysaccharide ester and to optimize the reaction at single factor level. The optimal products were obtained using 1:2 of octenylsuccinic acid: alginic acid, catalysed by 0.1% p-toluenesulfonic acid catalyst for 1.5 h at 200°C under vacuum conditions. The gained product contains up to 46% of seaweed gel monoesters. The degree of esterification of the polysaccharide is controlled by the use of the small-molecule trehalose. Compared with the traditional methods, our process can reduce raw material cost and improve emulsification stability of pure gum. These all can significantly improve the market competitiveness of pure gum products.

Keyword

trehalose pure gum synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apaliya M T, Zhang H Y, Yang Q Y, et al. 2017. Hanseniaspora uvarum enhanced with trehalose induced defense–related enzyme activities and relative genes expression levels against Aspergillus tubingensis in table grapes. Postharvest Biology and Technology, 132: 162–170.CrossRefGoogle Scholar
  2. Apaliya M T, Zhang H, Zheng X, Yang Q, Mahunu G K, Kwaw E. 2018. Exogenous trehalose enhanced the biocontrol efficacy of Hanseniaspora uvarum against grape berry rots caused by Aspergillus tubingensis and Penicillium commune. Journal of the Science of Food & Agricultur e, https://doi.org/10.1002/jsfa.8998.Google Scholar
  3. Baker J L, Lindsay E L, Faustoferri R C, To T T, Hendrickson E L, He X, Shi W, Mclean J S, Quivey R G Jr. 2018. Characterization of the trehalose utilization operon in Streptococcus mutans reveals that the TreR transcriptional regulator is involved in stress response Pathways and toxin production. Journal of Bacteriology, 200 (12), https://doi.org/10.1128/JB.00057–18.Google Scholar
  4. Beattie G M, Crowe J H, Lopez A D, Cirulli V, Ricordi C, Hayek A. 1997. Trehalose: a cryoprotectant that enhances recovery and preserves function of human pancreatic islets after long–term storage. Diabetes, 46 (3): 519–523.CrossRefGoogle Scholar
  5. Brockbank K G M, Campbell L H, Greene E D, et al. 2011. Lessons from nature for preservation of mammalian cells, tissues, and organs. In Vitro Cellular and Developmental Biology–Animal, 47 (3): 210–217.CrossRefGoogle Scholar
  6. Cai X, Seitl I, Mu W M, et al. 2018. Biotechnical production of trehalose through the trehalose synthase pathway: current status and future prospects. Applied Microbiology and Biotechnology, 102 (7): 2 965–2 976.CrossRefGoogle Scholar
  7. Caldwell C G, Wurzburg O B. 1953. Polysaccharide derivatives of substituted dicarboxylic acids. US, US2661349A.Google Scholar
  8. Charoen R, Jangchud A, Jangchud K, Harnsilawat T, Naivikul O, McClements D J. 2011. Influence of biopolymer emulsifier type on formation and stability of rice bran oilin–water emulsions: whey protein, gum arabic, and modified starch. Journal of Food Science, 76 (1): e165–E172.CrossRefGoogle Scholar
  9. De Virgilio C, Hottiger T, Dominguez J et al. 2010. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. European Journal of Biochemistry, 219 (1–2): 179–186.Google Scholar
  10. Domian E, Brynda–Kopytowska A, Cenkier J et al. 2015. Selected properties of microencapsulated oil powders with commercial preparations of maize OSA starch and trehalose. Journal of Food Engineering, 152: 72–84.CrossRefGoogle Scholar
  11. Drikic M, De Buck J. 2018. Split trehalase as a versatile reporter for a wide range of biological analytes. Biotechnology & Bioengineering, 115 (5): 1 128–1 136.CrossRefGoogle Scholar
  12. Fortuna T, Królikowska K, Pietrzyk S et al. 2017. Effect of metal ions on physicochemical and rheological properties of octenyl succinate starches. LWT, 86: 447–455.CrossRefGoogle Scholar
  13. Hernández–Meza J M, Sampedro J G. 2018. Trehalose mediated inhibition of lactate dehydrogenase from rabbit muscle. The application of kramers’ theory in enzyme catalysis. The Journal of Physical Chemistry B, 122 (15): 4 309–4 317.Google Scholar
  14. Higashiyama T. 2002. Novel functions and applications of trehalose. Pure and Applied Chemistry, 74 (7): 1 263–1 269.CrossRefGoogle Scholar
  15. Iturriaga G, Suárez R, Nova–Franco B. 2009. Trehalose metabolism: from osmoprotection to signaling. International Journal of Molecular Sciences, 10 (9): 3 793–3 810.CrossRefGoogle Scholar
  16. Jansson A, Järnström L. 2005. Barrier and mechanical properties of modified starches. Cellulose, 12 (4): 423–433.CrossRefGoogle Scholar
  17. Jeon Y S, Lowell V A, Gross R A. 1999. Studies of starch esterification: reactions with alkenyl–succinates in aqueous slurry systems. Starch–Stärke, 51 (2–3): 90–93.CrossRefGoogle Scholar
  18. Juansang J, Puttanlek C, Rungsardthong V, Puncha–Arnon S, Uttapap D. 2012. Effect of gelatinisation on slowly digestible starch and resistant starch of heat–moisture treated and chemically modified canna starches. Food Chemistry, 131 (2): 500–507.CrossRefGoogle Scholar
  19. Królikowska K, Fortuna T, Pietrzyk S, Gryszkin A. 2017. Effect of modification of octenyl succinate starch with mineral elements on the stability and rheological properties of oil–in–water emulsions. Food Hydrocolloids, 66: 118–127.CrossRefGoogle Scholar
  20. Lau U Y, Pelegri–O'Day E M, Maynard H D. 2017. Synthesis and biological evaluation of a degradable trehalose glycopolymer prepared by RAFT polymerization. Macromolecular Rapid Communications, 39 (5), https://doi.org/10.1002/marc.201700652.Google Scholar
  21. Lee J Y, Ko J H, Mansfield K M, Nauka P C, Bat E, Maynard H D. 2018. Glucose–responsive trehalose hydrogel for insulin stabilization and delivery. Macromolecular Bioscience, 18 (5): 1700372.CrossRefGoogle Scholar
  22. Li D H, Li L, Xiao N, Li M Y, Xie X A. 2018. Physical properties of oil–in–water Nanoemulsions stabilized by OSA–modified starch for the encapsulation of lycopene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 552: 59–66.CrossRefGoogle Scholar
  23. Li Y, Wang Z W, Feng Y, Yuan Q P. 2017. Improving trehalose synthase activity by adding the C–terminal domain of trehalose synthase from Thermus thermophilus. Bioresource Technology, 245: 1 749–1 756.CrossRefGoogle Scholar
  24. Liang R, Shoemaker C F, Yang X Q, Zhong F, Huang Q R. 2013. Stability and bioaccessibility of ß–carotene in nanoemulsions stabilized by modified starches. Journal of Agricultural and Food Chemistry, 61 (6): 1 249–1 257.CrossRefGoogle Scholar
  25. Lin Y C, Zhang J, Gao W C, Chen Y, Li H X, Lawlor D W, Paul M J, Pan W J. 2017. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism. BMC Plant Biology, 17 (1): 247.CrossRefGoogle Scholar
  26. Liu T T, Zhu L Y, Zhang Z P, et al. 2017. Protective role of trehalose during radiation and heavy metal stress in Aureobasidium subglaciale F134. Scientific Reports, 7: 17 586.CrossRefGoogle Scholar
  27. Liyaghatdar Z, Emamzadeh R, Rasa S M M, et al. 2017. Trehalose radial networks protect Renilla luciferase helical layers against thermal inactivation. International Journal of Biological Macromolecules, 105: 66–73.CrossRefGoogle Scholar
  28. Mandal S, Debnath K, Jana N R. 2017. Trehalose–functionalized gold nanoparticle for inhibiting intracellular protein aggregation. Langmuir, 33 (49): 13 996–14 003.CrossRefGoogle Scholar
  29. O’Neill M K, Piligian B F, Olson C D, Woodruff P J, Swarts B M. 2017. Tailoring trehalose for biomedical and biotechnological applications. Pure & Applied Chemistry. Chimie Pure et Appliquee, 89 (9): 1 223–1 249.Google Scholar
  30. Ohtake S, Wang Y J. 2011. Trehalose: current use and future applications. Journal of Pharmaceutical Sciences, 100 (6): 2 020–2 053.CrossRefGoogle Scholar
  31. Qiu D, Bai Y, Shi Y C. 2012. Identification of isomers and determination of octenylsuccinate in modified starch by HPLC and mass spectrometry. Food Chemistry, 135 (2): 665–671.CrossRefGoogle Scholar
  32. Sarkar S, Gupta S, Variyar P S, Sharma A, Singhal R S. 2013. Hydrophobic derivatives of guar gum hydrolyzate and gum Arabic as matrices for microencapsulation of mint oil. Carbohydrate Polymers, 9 5 (1): 177–182.CrossRefGoogle Scholar
  33. Sarkar S, Singhal R S. 2011. Esterification of guar gum hydrolysate and gum arabic with n–octenyl succinic anhydride and oleic acid and its evaluation as wall material in microencapsulation. Carbohydrate Polymers, 86 (4): 1 723–1 731.CrossRefGoogle Scholar
  34. Shirakashi R, Takano K. 2018. Recrystallization and water absorption properties of vitrified trehalose near room temperature. Pharmaceutical Research, 35 (7): 139.CrossRefGoogle Scholar
  35. Shogren R L, Viswanathan A, Felke F, Gross R A. 2000. Distribution of octenyl succinate groups in octenyl succinic anhydride modified waxy maize starch. Starch–Stärke, 52 (6–7): 196–204.CrossRefGoogle Scholar
  36. Sizovs A, Xue L, Tolstyka Z P, Ingle N P, Wu Y Y, Cortez M, Reineke T M. 2013. Poly(trehalose): sugar–coated nanocomplexes promote stabilization and effective polyplex–mediated siRNA delivery. Journal of the American Chemical Society, 135 (41): 15 417–15 424.CrossRefGoogle Scholar
  37. Sweedman M C, Tizzotti M J, Schäfer C, Gilbert R G. 2013. Structure and physicochemical properties of octenyl succinic anhydride modified starches: a review. Carbohydrate Pol ymers, 92 (1): 905–920.CrossRefGoogle Scholar
  38. Tanaka M, Machida Y, Niu S Y, et al. 2004. Trehalose alleviates polyglutamine–mediated pathology in a mouse model of Huntington disease. Nature Medicine, 10 (2): 148–152.CrossRefGoogle Scholar
  39. Tang B, Wang S, Wang S G, Wang H J, Zhang J Y, Cui S Y. 2018. Invertebrate trehalose–6–phosphate synthase gene: genetic architecture, biochemistry, physiological function, and potential applications. Frontiers in Physiology, 9: 30.CrossRefGoogle Scholar
  40. Tesch S, Gerhards C H, Schubert H. 2002. Stabilization of emulsions by OSA starches. Journal of Food Engineering, 54 (2): 167–174.CrossRefGoogle Scholar
  41. Torres O, Murray B, Sarkar A. 2016. Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends in Food Science & Technology, 55: 98–108.CrossRefGoogle Scholar
  42. Wang C, He X, Fu X et al. 2015. High–speed shear effect on properties and octenylsuccinic anhydride modification of corn starch. Food Hydrocolloids, 44 (4): 32–39.CrossRefGoogle Scholar
  43. Wang J Q, Ren X D, Wang R M, Su J, Wang F. 2017. Structural characteristics and function of a new kind of thermostable trehalose synthase from Thermobaculum terrenum. Journal of Agricultural & Food Chemistry, 65 (35): 7 726–7 735.CrossRefGoogle Scholar
  44. Wen Z, Lin J, Su J, Zheng Z K, Chen Q, Chen L D. 2017. Influences of trehalose–modification of solid lipid nanoparticles on drug loading. European Journal of Lipid Science & Technology, 119 (9).Google Scholar
  45. Wu H Y, Chang Q. 2018. The cryoprotectant trehalose could inhibit ERS–induced apoptosis by activating autophagy in cryoprotected rat valves. PLoS One, 13 (7): e0201082.CrossRefGoogle Scholar
  46. Wu Y, Wang J, Shen X, Wang J, Chen Z, Sun X, Yuan Q, Yan Y. 2017. Investigating the strategies for microbial production of trehalose from lignocellulosic sugars. Biotechnology & Bioengineering, 115 (3): 785–790.CrossRefGoogle Scholar
  47. Yang S J, Lv X, Wang X H, Wang J Q, Wang R M, Wang T F. 2017. Cell–surface displayed expression of trehalose synthase from Pseudomonas putida ATCC 47054 in Pichia pastoris using Pir1p as an anchor protein. Frontiers in Microbiology, 8: 2 583.Google Scholar
  48. Zheng Y, Hu L, Ding N, Liu P, Yao C, Zhang H. 2016. Physicochemical and structural characteristics of the octenyl succinic ester of ginkgo starch. International Journal of Biological Macromolecules, 94: 566–570.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mengfei Wan
    • 1
  • Zhongdong Liu
    • 1
    Email author
  • Yongfu Chen
    • 2
  • Caiyuan Lu
    • 2
  • Kechang Li
    • 3
  • Fahe Wang
    • 3
  • Xiaomei Wang
    • 3
  • Boxiang Liu
    • 4
  1. 1.Food Science and TechnologyHenan University of TechnologyZhengzhouChina
  2. 2.Ruilin Chem. Ltd.HangzhouChina
  3. 3.State Key Laboratory of Bioactive Seaweed SubstancesQingdao Brightmoon Seaweed Group Co. Ltd.QingdaoChina
  4. 4.Montgomery LabStanford UniversityCAUSA

Personalised recommendations