Advertisement

Journal of Oceanology and Limnology

, Volume 37, Issue 2, pp 474–485 | Cite as

Spatial-temporal variability of submesoscale currents in the South China Sea

  • Jianing Li
  • Jihai Dong
  • Qingxuan YangEmail author
  • Xu Zhang
Physics
  • 50 Downloads

Abstract

Spatial and seasonal variabilities of submesoscale currents in the northeastern South China Sea are investigated by employing a numerical simulation with a horizontal resolution of 1 km. The results suggest that submesoscale currents are widespread in the surface mixed layer mainly due to the mixed layer instabilities and frontogenesis. In horizontal, submesoscale currents are generally more active in the north than those in the south, since that active eddies, especially cyclonic eddies, mainly occur in the northern area. Specifically, submesoscale currents are highly intensified in the east of Dongsha Island and south of Taiwan Island. In temporal sense, submesoscale currents are more active in winter than those in summer, since the mixed layer is thicker and more unstable in the winter. The parameterization developed by Fox-Kemper et al. is examined in terms of vertical velocity, and the results suggest that it could reproduce the vertical velocity if mixed layer instability dominates there. This study improves our understanding of the submesoscale dynamics in the South China Sea.

Keyword

submesoscale currents spatial-seasonal variability South China Sea (SCS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boccaletti G, Ferrari R, Fox–Kemper B. 2007. Mixed layer instabilities and restratification. Journal of Physical Oceanography, 37 (9): 2 228–2 250.Google Scholar
  2. Brannigan L, Marshall D, Naveira–Garabato A, Nurser A. 2015. The seasonal cycle of submesoscale flows. Ocean Modelling, 92: 69–84.Google Scholar
  3. Callies J, Ferrari R, Klymak J M, Gula J. 2015. Seasonality in submesoscale turbulence. Nature Communications, 6: 6862.Google Scholar
  4. Callies J, Ferrari R. 2013. Interpreting energy and tracer spectra of upper–ocean turbulence in the submesoscale range (1–200 km). Journal of Physical Oceanography, 43 (11): 2 456–2 474.Google Scholar
  5. Callies J, Flierl G, Ferrari R, Fox–Kemper B. 2016. The role of mixed–layer instabilities in submesoscale turbulence. Journal of Fluid Mechanics, 788: 5–41.Google Scholar
  6. Capet X, McWilliams J C, Molemaker M J, Shchepetkin A F. 2008a. Mesoscale to submesoscale transition in the California current system. Part I: flow structure, eddy flux, and observational tests. Journal of Physical Oceanography, 38 (1): 29–43.Google Scholar
  7. Capet X, McWilliams J C, Molemaker M J, Shchepetkin A F. 2008b. Mesoscale to submesoscale transition in the California current system. Part II: frontal processes. Journal of Physical Oceanography, 38 (1): 44–64.Google Scholar
  8. Capet X, McWilliams J C, Molemaker M J, Shchepetkin A F. 2008c. Mesoscale to submesoscale transition in the California current system. Part III: energy balance and flux. Journal of Physical Oceanography, 38 (10): 2 256–2 269.Google Scholar
  9. Charney J G. 1971. Geostrophic turbulence. Journal of the Atmospheric Sciences, 28 (6): 1 087–1 095.Google Scholar
  10. D’Asaro E, Lee C, Rainville L, Harcourt R, Thomas L. 2011. Enhanced turbulence and energy dissipation at ocean fronts. Science, 332 (6027): 318–322.Google Scholar
  11. Fox–Kemper B, Ferrari R, Hallberg R. 2008. Parameterization of mixed layer eddies. Part I: theory and diagnosis. Journal of Physical Oceanography, 38 (6): 1 145–1 165.Google Scholar
  12. Gula J, Molemaker M J, McWilliams J C. 2016. Topographic generation of submesoscale centrifugal instability and energy dissipation. Nature Communications, 7: 12 811.Google Scholar
  13. Hoskins B J. 1982. The mathematical theory of frontogenesis. Annual Review of Fluid Mechanics, 14 (1): 131–151.Google Scholar
  14. Ji C Z, Ye R J, Dong J H, Zhang Z W, Tian J W. 2017. The simulation of submesoscale process at the periphery of a mesoscale eddy in the South China Sea. Periodical of Ocean University of China, 47 (1): 1–6. (in Chinese with English abstract)Google Scholar
  15. Liu Z Y, Lozovatsky I. 2012. Upper pycnocline turbulence in the northern South China Sea. Chinese Science Bulletin, 57 (18): 2 302–2 306.Google Scholar
  16. Luo S H, Jing Z Y, Qi Y Q, Xie Q. 2016. Numerical study on sub–mesoscale processes in the northern South China Sea. Journal of Tropical Oceanography, 35 (5): 10–19. (in Chinese with English abstract)Google Scholar
  17. Mahadevan A, Tandon A. 2006. An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modelling, 14 (3–4): 241–256.Google Scholar
  18. Mahadevan A. 2006. Modeling vertical motion at ocean fronts: Are nonhydrostatic effects relevant at submesoscales? Ocean Modelling, 14 (3–4): 222–240.Google Scholar
  19. Mason E, Molemaker J, Shchepetkin A F, Colas F, McWilliams J C, Sangrà P. 2010. Procedures for offline grid nesting in regional ocean models. Ocean Modelling, 35 (1–2): 1–15.Google Scholar
  20. McGillicuddy D J, Robinson A R, Siegel D A, Jannasch H W, Johnson R, Dickey T D, McNeil J, Michaels A F, Knap A H. 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394 (6690): 263–266.Google Scholar
  21. McWilliams J C. 2016. Submesoscale currents in the ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 472 (2189): 20160117.Google Scholar
  22. Orlanski I. 1976. A simple boundary condition for unbounded hyperbolic flows. Journal of Computational Physics, 21 (3): 251–269.Google Scholar
  23. Oschlies A. 2008. Eddies and upper–ocean nutrient supply. In: Hecht M, Hasumi H eds. Ocean Modeling in an Eddying Regime. Washington: Blackwell Publishing Ltd., 177: 115–130.Google Scholar
  24. Pollard R T, Regier L A. 1992. Vorticity and vertical circulation at an ocean front. Journal of Physical Oceanography, 22 (6): 609–625.Google Scholar
  25. Qiu B, Chen S M, Klein P, Sasaki H, Sasai Y. 2014. Seasonal mesoscale and submesoscale eddy variability along the North Pacific subtropical countercurrent. Journal of Physical Oceanography, 44 (12): 3 079–3 098.Google Scholar
  26. Ramp S R, Yang Y J, Bahr F L. 2010. Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes in Geophysics, 17 (5): 481–498.Google Scholar
  27. Roullet G, McWilliams J C, Capet X, Molemaker M J. 2012. Properties of steady geostrophic turbulence with isopycnal outcropping. Journal of Physical Oceanography, 42 (1): 18–38.Google Scholar
  28. Sasaki H, Klein P, Qiu B, Sasai Y. 2014. Impact of oceanicscale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nature Communications, 5: 5636.Google Scholar
  29. Shang X D, Liang C R, Chen G Y. 2017. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea. Ocean Science, 13 (3): 503–519.Google Scholar
  30. Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split–explicit, free–surface, topography–following–coordinate oceanic model. Ocean Modelling, 9 (4): 347–404.Google Scholar
  31. Taylor J R, Ferrari R. 2011. Ocean fronts trigger high latitude phytoplankton blooms. Geophysical Research Letters, 38 (23): L23601.Google Scholar
  32. Thomas L N, Tandon A, Mahadevan A. 2008. Submesoscale processes and dynamics. In: Hecht M, Hasumi H eds. Ocean Modeling in an Eddying Regime. Washington: Blackwell Publishing Ltd., 177: 17–38.Google Scholar
  33. Thomas L N, Taylor J R, Ferrari R, Joyce T M. 2013. Symmetric instability in the Gulf Stream. Deep Sea Research Part II: Topical Studies in Oceanography, 91: 96–110.Google Scholar
  34. Uchida T, Abernathey R, Smith S. 2017. Seasonality of eddy kinetic energy in an eddy permitting global climate model. Ocean Modelling, 118: 41–58.Google Scholar
  35. Umlauf L, Burchard H. 2003. A generic length–scale equation for geophysical turbulence models. Journal of Marine Research, 61 (2): 235–265.Google Scholar
  36. Wang G H, Su J L, Chu P C. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30 (21): 2121.Google Scholar
  37. Xie X H, Shang X D, Chen G Y, Sun L. 2009. Variations of diurnal and inertial spectral peaks near the bi–diurnal critical latitude. Geophysical Research Letters, 36(2): L02606.Google Scholar
  38. Yang Q X, Zhao W, Liang X F, Dong J H, Tian J W. 2017. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. Journal of Physical Oceanography, 47 (4): 895–907.Google Scholar
  39. Yang Q X, Zhao W, Liang X F, Tian J W. 2016. Threedimensional distribution of turbulent mixing in the South China Sea. Journal of Physical Oceanography, 46 (3): 769–788.Google Scholar
  40. Zhang Z W, Tian J W, Qiu B, Zhao W, Chang P, Wu D X, Wan X Q. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Science Reports, 6: 24349.Google Scholar
  41. Zheng Q A, Lin H, Meng J M, Hu X M, Song Y T, Zhang Y Z, Li C Y. 2008. Sub–mesoscale ocean vortex trains in the Luzon Strait. Journal of Geophysical Research: Oceans, 113 (C4): C04032.Google Scholar
  42. Zhong Y S, Bracco A, Tian J W, Dong J H, Zhao W, Zhang Z W. 2017. Observed and simulated submesoscale vertical pump of an anticyclonic eddy in the South China Sea. Science Reports, 7: 44011.Google Scholar
  43. Zhong Y S, Bracco A. 2013. Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico. Journal of Geophysical Research: Oceans, 118 (10): 5 651–5 668.Google Scholar
  44. Zhou C, Zhao W, Tian J W, Yang Q X, Qu T D. 2014. Variability of the deep–water overflow in the Luzon Strait. Journal of Physical Oceanography, 44 (11): 2 972–2 986.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jianing Li
    • 1
  • Jihai Dong
    • 2
  • Qingxuan Yang
    • 1
    Email author
  • Xu Zhang
    • 3
  1. 1.Physical Oceanography Laboratory/CIMST, Ocean University of Chinaand Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  2. 2.Marine Science CollegeNanjing University of Information Science & TechnologyNanjingChina
  3. 3.College of Oceanic and Atmospheric SciencesOcean University of ChinaQingdaoChina

Personalised recommendations