Advertisement

Journal of Oceanology and Limnology

, Volume 37, Issue 2, pp 651–656 | Cite as

Transient expression of the enhanced green fluorescent protein (egfp) gene in Sargassum horneri

  • Yunlong Pang
  • Yan Li
  • Zhengyi Liu
  • Yulin CuiEmail author
  • Song QinEmail author
Biology
  • 34 Downloads

Abstract

Sargassum horneri is a macroalga widespread in North Asia-Pacific region, and these years its bloom has caused huge damage to the environment and the economic in China. To make up the blank on genetic engineering research, a transient transformation system for the multicellular marine brown alga S. horneri was established in this research. The algae used in this research were collected from the Yellow Sea of China and verified as a same species S. horneri with analysis of molecular markers. The S. horneri parietal leaves were transformed with the enhanced green fluorescent gene as the reporter by micro-particle bombardment. The results show that GFP is an effective transgene reporter for S. horneri and that particle bombardment is a suitable method for transformation of S. horneri. Through selection of four different promoters for EGFP and six groups’ bombardment characters, the highest transformation efficiency approximately 1.31% was got with the vector pEGFP-N1 at bombardment characters 900 spi and 6 cm distance. This research paves a way for the further research and application of S. horneri.

Keyword

green fluorescent protein particle bombardment Sargassum horneri transgenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choi H G, Lee K H, Yoo H I, Kang P J, Kim Y S, Nam K W. 2008. Physiological differences in the growth of Sargassum horneri between the germling and adult stages. J. Appl. Phycol., 20(5): 729–735.CrossRefGoogle Scholar
  2. Cui Y L, Wang J F, Jiang P, Bian S G, Qin S. 2010. Transformation of Platymonas (Tetraselmis) subcordiformis (Prasinophyceae, Chlorophyta) by agitation with glass beads. World J. Microbiol. Biotechnol., 26(9): 1 653–1 657.CrossRefGoogle Scholar
  3. Deng X Y, Qin S, Zhang Q, Jiang P, Cui Y L, Li X K. 2009. Microprojectile bombardment of Laminaria japonica gametophytes and rapid propagation of transgenic lines within a bubble-column bioreactor. Plant Cell Tiss. Organ. Cult., 97(3): 253–261.CrossRefGoogle Scholar
  4. Heim R, Prasher D C, Tsien R Y. 1994. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. P roc. N atl. A cad. S ci. USA, 91(26): 12 501–12 504.CrossRefGoogle Scholar
  5. Hirata R, Takahashi M, Saga N, Mikami K. 2011. Transient gene expression system established in Porphyra yezoensis is wildly acceptable in Bangisphycean algae. Mar. Biotech nol., 13(5): 1 038–1 047.CrossRefGoogle Scholar
  6. Hirata R, Uji T, Fukuda S, Mizuta H, Fujiyama A, Tabata S, Saga A. 2014. Development of a nuclear transformation system with a codon-optimized selection marker and reporter genes in Pyropia yezoensis (Rhodophyta). J. Appl. Phycol., 26(4): 1 863–1 868.CrossRefGoogle Scholar
  7. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16(2): 111–120.CrossRefGoogle Scholar
  8. Lechtreck K F, Rostmann J, Grunow A. 2002. Analysis of chlamydomonas SF-assemblin by GFP tagging and expression of antisense constructs. J. Cell Sci., 115(7): 1 511–1 522.Google Scholar
  9. Li F C, Qin S, Jiang P, Wu Y, Zhang W. 2009. The integrative expression of GUS gene driven by FCP promoter in the seaweed Laminaria japonica (Phaeophyta). J. Appl. Phycol., 21(3): 287–293.CrossRefGoogle Scholar
  10. Ma A C, Chen Z, Wang T, Song N, Yan Q, Fang Y C, Guan H S, Liu H B. 2014. Isolation of the molecular species of monogalactosyldiacylglycerols from brown edible seaweed Sargassum horneri and their inhibitory effects on triglyceride accumulation in 3T3-L1 adipocytes. J. Agri c. Food Chem., 62(46): 11 157–11 162.CrossRefGoogle Scholar
  11. Mikami K. 2013. Current advances in seaweed transformation. In: Baptista G R ed. An Integrated View of the Molecular Recognition and Toxinology-From Analytical Procedures to Biomedical Applications. InTech. p.323-347.CrossRefGoogle Scholar
  12. Mikami K. 2014. A technical breakthrough close at hand: feasible approaches toward establishing a gene-targeting genetic transformation system in seaweeds. Front. Plant Sci., 5: 498.Google Scholar
  13. Oertel W, Wichard T, Weissgerber A. 2015. Transformation of Ulva mutabilis (Chlorophyta) by vector plasmids integrating into the genome. J. Phycol., 51(5): 963–979.CrossRefGoogle Scholar
  14. Ormö M, Cubitt A B, Kallio K, Gross L A, Tsien R Y, Remington S J. 1996. Crystal structure of the Aequorea victoria green fluorescent protein. Science, 273(5280): 1 392–1 395.CrossRefGoogle Scholar
  15. Pöggeler S, Masloff S, Hoff B, Mayrhofer S, Kück U. 2003. Versatile EGFP reporter plasmids for cellular localization of recombinant gene products in filamentous fungi. Curr. Genet., 43(1): 54–61.Google Scholar
  16. Qin S, Lin H Z, Jiang P. 2012. Advances in genetic engineering of marine algae. Biotechnol. Adv., 30(6): 1 602–1 613.CrossRefGoogle Scholar
  17. Sanjeewa K K A, Fernando I P S, Kim E A, Ahn G, Jee Y, Jeon Y J. 2017. Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW 264.7 cells. Nutr. Res. Pract., 11(1): 3–10.CrossRefGoogle Scholar
  18. Tseng C K, Lu B R. 2000. Flora Algarum Marinarum Sinicarum. Science Press, Beijing, China. p.43-44.(in Chinese)Google Scholar
  19. Wang J F, Jiang P, Cui Y L, Deng X Y, Li F C, Liu J G, Qin S. 2010. Genetic transformation in Kappaphycus alvarezii using micro-particle bombardment: a potential strategy for germplasm improvement. Aquacult Int., 18(6): 1 027–1 034.CrossRefGoogle Scholar
  20. Wang M P, Chen L, Liu Z Y, Zhang Z J, Qin S, Yan P S. 2016. Isolation of a novel alginate lyase-producing Bacillus litoralis strain and its potential to ferment Sargassum horneri for biofertilizer. Microbiol ogyOpen, 5(6): 1 038–1 049.CrossRefGoogle Scholar
  21. Wen Z S, Xiang X W, Jin H X, Guo X Y, Liu L J, Huang Y N, Ouyang X K, Qu Y L. 2016. Composition and antiinflammatory effect of polysaccharides from Sargassum horneri in RAW264.7 macrophages. Int. J. Biol. Macromol., 88: 403–413.CrossRefGoogle Scholar
  22. Xing Q G, Guo R H, Wu L L, An D Y, Cong M, Qin S, Li X R. 2017. High-resolution satellite observations of a new hazard of golden tides caused by floating sargassum in Winter in the Yellow Sea. IEEE Geosci. Remote Sens. Lett., 14(10): 1 815–1 819.CrossRefGoogle Scholar
  23. Yi J T, Huang J T, Song J L. 2009. Initial understand of Enteromorpha prolifera Occurred in Yancheng Coastal Waters in 2008. Mar. Environ. Sci., 28(S1): 57-58.(in Chinese with English abstract)Google Scholar
  24. Yoshida T. 1983. Japanese species of Sargassum subgenus Bactrophycus(Phaeophyta, Fucales). J. Fac. Sci. Hokkaido Univ. Ser. V, 13: 99–246.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Yantai Ocean Environmental Monitoring Central Station of State Oceanic AdministrationYantaiChina

Personalised recommendations