Journal of Oceanology and Limnology

, Volume 37, Issue 2, pp 375–384 | Cite as

Oceanic barrier layer variation induced by tropical cyclones in the Northwest Pacific

  • Zhixiang Zhang
  • Lingling LiuEmail author
  • Fan Wang


According to Argo profiles and one-dimensional Price-Weller-Pinkel models, the oceanic barrier layer variation induced by tropical cyclones is adequately analyzed in the Northwest Pacific. Results show that tropical cyclones mainly affect the oceanic barrier layer through intensifying and weakening pre-existed barrier layer. The former even may generate new one after tropical cyclones’ passage. The latter can make pre-existed one disappear. Local wind stress and precipitation, the dominant factors, primarily determine the variation of barrier layer. Negative effects of wind mainly focus on the north of 20°N. This phenomenon is more meaningful for slow tropical cyclones. Conversely, positive effects of wind and precipitation center on the south of 20°N in the Northwest Pacific. Some data indicate that the barrier layer variation is also closely related with initial mixed layer depth and barrier layer thickness.


Oceanic barrier layer tropical cyclones Northwest Pacific Argo Price-Weller-Pinkel model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Androulidakis Y, Kourafalou V, Halliwell G, Le HénaffM, Kang H, Mehari M, Atlas R. 2016. Hurricane interaction with the upper ocean in the Amazon–Orinoco plume region. Ocean Dynamics, 66 (1–2): 1 559–1 588.Google Scholar
  2. Balaguru K, Chang P, Saravanan R, Leung L R, Xu Z, Li M K, Hsieh J S. 2012. Ocean barrier layers’ effect on tropical cyclone intensification. Proceedings of the National Academy of Sciences of the United States of America, 109 (36): 14 343–14 347, 1201364109.Google Scholar
  3. Bender M A, Ross R J, Tuleya R E, Kurihara Y. 1993. Improvements in tropical cyclone track and intensity forecasts using the GFDL initialization system. Monthly Weather Review, 121 (7): 2 046–2 061.Google Scholar
  4. Chang Y C, Chen G Y, Tseng R S, Centurioni L R, Chu P C. 2012. Observed near–surface currents under high wind speeds. Journal of Geophysical Research: Oceans, 117 (C11): C11026.Google Scholar
  5. Chang Y C, Chen G Y, Tseng R S, Centurioni L R, Chu P C. 2013. Observed near–surface flows under all tropical cyclone intensity levels using drifters in the northwestern Pacific. Journal of Geophysical Research: Oceans, 118 (5): 2 367–2 377.Google Scholar
  6. Chiang T L, Wu C R, Oey L Y. 2011. Typhoon Kai–Tak: an ocean’s perfect storm. Journal of Physical Oceanography, 41 (1): 221–233.Google Scholar
  7. Chu P C, Lu S H, Liu W T. 1999. Uncertainty of South China Sea prediction using NSCAT and National Centers for Environmental Prediction winds during tropical storm Ernie, 1996. Journal of Geophysical Research: Oceans, 104 (C5): 11 273–11 289.Google Scholar
  8. Chu P C, Veneziano J M, Fan C W, Carron M J, Liu W T. 2000. Response of the South China Sea to tropical cyclone Ernie 1996. Journal of Geophysical Research: Oceans, 105 (C6): 13 991–14 009.Google Scholar
  9. Chu P C, Wang G H. 2003. Seasonal variability of thermohaline front in the central South China Sea. Journal of Oceanography, 59 (1): 65–78.Google Scholar
  10. Cione J J, Uhlhorn E W. 2003. Sea surface temperature variability in hurricanes: implications with respect to intensity change. Monthly Weather Review, 131 (8): 1 783–1 796.Google Scholar
  11. Fu H L, Wang X D, Chu P C, Zhang X F, Han G J, Li W. 2014. Tropical cyclone footprint in the ocean mixed layer observed by Argo in the Northwest Pacific. Journal of Geophysical Research: Oceans, 119 (11): 8 078–8 092.Google Scholar
  12. Grodsky S A, Carton J A, Liu H L. 2008. Comparison of bulk sea surface and mixed layer temperatures. Journal of Geophysical Research: Oceans, 113 (C10): C10026, Scholar
  13. Huang W R, Xiao H. 2009. Numerical modeling of dynamic wave force acting on Escambia Bay Bridge deck during Hurricane Ivan. Journal of Waterway, Port, Coastal, and Ocean Engineering, 135 (4): 164–175.Google Scholar
  14. Huffman G J, Adler R F, Curtis S, Bolvin D T, Nelkin E J. 2007. Global rainfall analyses at monthly and 3–h time scales. In: Levizzani V, Bauer P, Turk F J eds. Measuring Precipitation from Space. Springer, Dordrecht, Netherlands. p.291–305.Google Scholar
  15. Jacob S D, Shay L K, Mariano A J, Black P G. 2000. The 3D oceanic mixed layer response to Hurricane Gilbert. Journal of Physical Oceanography, 30 (6): 1 407–1 429.Google Scholar
  16. Jaimes B, Shay L K. 2009. Mixed layer cooling in mesoscale oceanic eddies during hurricanes Katrina and Rita. Monthly Weather Review, 137 (12): 4 188–4 207.Google Scholar
  17. Jourdain N C, Lengaigne M, Vialard J, Madec G, Menkes C E, Vincent E M, Jullien S, Barnier B. 2013. Observationbased estimates of surface cooling inhibition by heavy rainfall under tropical cyclones. Journal of Physical Oceanography, 43 (1): 205–221.Google Scholar
  18. Kaplan J, DeMaria M. 2003. Large–scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather and Forecasting, 18 (6): 1 093–1 108.Google Scholar
  19. Large W G, Pond S. 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11 (3): 324–336.Google Scholar
  20. Lukas R, Lindstrom E. 1991. The mixed layer of the western equatorial Pacific Ocean. Journal of Geophysical Research: Oceans, 96 (S01): 3 343–3 357.Google Scholar
  21. Nam S, Kim D J, Moon W M. 2012. Observed impact of mesoscale circulation on oceanic response to Typhoon Man–Yi (2007). Ocean Dynamics, 62 (1): 1–12.Google Scholar
  22. Neetu S, Lengaigne M, Vincent E M, Vialard J, Madec G, Samson G, Ramesh Kumar M R, Durand F. 2014. Influence of upper–ocean stratification on tropical cyclone–induced surface cooling in the Bay of Bengal. Journal of Geophysical Research: Oceans, 117 (C12): C12020.Google Scholar
  23. Oey L Y, Ezer T, Wang D P, Fan S J, Yin X Q. 2006. Loop current warming by hurricane Wilma. Geophysical Research Letters, 33 (8): L08613, 1029/2006gl025873.Google Scholar
  24. Powell M D, Vickery P J, Reinhold T A. 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422 (6929): 279–283.Google Scholar
  25. Price J F, Sanford T B, Forristall G Z. 1994. Forced stage response to a moving hurricane. Journal of Physical Oceanography, 24 (2): 233–260.Google Scholar
  26. Price J F, Weller R A, Pinkel R. 1986. Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. Journal of Geophysical Research: Oceans, 91 (C7): 8 411–8 427.Google Scholar
  27. Price J F. 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography, 11 (2): 153–175.Google Scholar
  28. Rappin E D, Nolan D S, Majumdar S J. 2013. A highly configurable vortex initialization method for tropical cyclones. Monthly Weather Review, 141 (10): 3 556–3 675.Google Scholar
  29. Sanford T B, Black P G, Haustein J R, Feeney J W, Forristall G Z, Price J F. 1987. Ocean response to a hurricane. Part I: observations. Journal of Physical Oceanography, 17 (11): 2 065–2 083.Google Scholar
  30. Schade L R, Emanuel K A. 1999. The ocean’s effect on the intensity of tropical cyclones: results from a simple coupled atmosphere–ocean model. Journal of the Atmospheric Sciences, 56 (4): 642–651.Google Scholar
  31. Shay L K, Black P G, Mariano A J, Hawkins J D, Elsberry R L. 1992. Upper ocean response to Hurricane Gilbert.Journal of Geophysical Research: Oceans, 97 (C12): 20 227–20 248.Google Scholar
  32. Shay L K, Uhlhorn E W. 2008. Loop current response to hurricanes Isidore and Lili. Monthly Weather Review, 136 (9): 3 248–3 274, Scholar
  33. Sprintall J, Tomczak M. 1992. Evidence of the barrier layer in the surface layer of the tropics. Journal of Geophysical Research: Oceans, 97 (C5): 7 305–7 316.Google Scholar
  34. Vincent E M, Lengaigne M, Madec G, Vialard J, Samson G, Jourdain N C, Menkes C E, Jullien S. 2012. Processes setting the characteristics of sea surface cooling induced by tropical cyclones. Journal of Geophysical Research: Oceans, 117 (C2): C02020.Google Scholar
  35. Vissa N K, Satyanarayana A N V, Kumar B P. 2013. Response of upper ocean and impact of barrier layer on Sidr cyclone induced sea surface cooling. Ocean Science Journal, 48 (3): 279–288,–013–0026–x.Google Scholar
  36. Wang X D, Han G J, Qi Y Q, Li W. 2011. Impact of barrier layer on typhoon–induced sea surface cooling. Dynamics of Atmospheres and Oceans, 52 (3): 367–385, http://dx. Scholar
  37. Willoughby H E, Darling R W R, Rahn M E. 2006. Parametric representation of the primary hurricane vortex. Part II: a new family of sectionally continuous profiles. Monthly Weather Review, 134 (4): 1 102–1 120.Google Scholar
  38. Yu L S, Jin X Z, Weller R A. 2008. Multidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts. p.64.Google Scholar
  39. Yu L S, Weller R A. 2007. Objectively analyzed air–sea heat fluxes for the global ice–free oceans (1981–2005). Bull etin of the Am erican Meteorol ogical Soc iety, 88 (4): 527–540.Google Scholar
  40. Zheng Z W, Ho C R, Kuo N J. 2008. Importance of pre–existing oceanic conditions to upper ocean response induced by Super Typhoon Hai–Tang. Geophysical Research Letters, 35 (20): L20603.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Ocean Circulation and Waves, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.Center for Ocean Mega-ScienceChinese Academy of SciencesQingdaoChina

Personalised recommendations