Advertisement

Effects of stocking density on the growth and immunity of Atlantic salmon salmo salar reared in recirculating aquaculture system (RAS)

  • Yanfeng Wang
  • Liang Chi
  • Qinghua Liu
  • Yongshuang Xiao
  • Daoyuan Ma
  • Zhizhong Xiao
  • Shihong XuEmail author
  • Jun LiEmail author
Article
  • 13 Downloads

Abstract

Atlantic salmon reared in recirculating aquaculture system (RAS) may lead to inappropriately high stocking density, because fish live in a limited space. Finding the suitable stocking density of Atlantic salmon reared in RAS is very important for RAS industry. In this paper, the influence of stocking density on growth and some stress related physiological factors were investigated to evaluate the effects of stocking density. The fish were reared for 220 days at five densities (A: 24 kg/m3; B: 21 kg/m3; C: 15 kg/m3; D: 9 kg/ m3 and E: 6 kg/m3 ). The results show that 30 kg/m3 might be the maximum density which RAS can afford in China. The stocking densities under 30 kg/m3 have no effect on mortality of Atlantic salmon reared in RAS. However, the specific growth rate (SGR), final weight and weight gain in the high density group were significantly lower than the lower density groups and middle density groups. Moreover, feed conversion rate (FCR) had a negative correlation with density. Plasma hormone T3 and GH showed significant decrease with the increase of the stocking density of the experiment. Furthermore, thyroid hormone (T3), GH (growth hormone) activities were decreased with stocking density increase. However, plasma cortisol, GOT (glutamic oxalacetic transaminase) and GPT (glutamic pyruvic transaminase) activities were increase with stocking density increase. And the stocking density has no effects on plasma lysozyme of Atlantic salmon reared in RAS. These investigations would also help devise efficient ways to rear adult Atlantic salmon in China and may, in a way, help spread salmon mariculture in China.

Keyword

stocking density growth physiological parameters Atlantic salmon RAS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad H I, Verma A K, Rani A M B, Rathore G, Saharan N, Gora A H. 2016. Growth, non–specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture, 457: 61–67, https://doi.org/10. 1016/j.aquaculture.2016.02.011.CrossRefGoogle Scholar
  2. Ashley P J. 2007. Fish welfare: current issues in aquaculture. Applied Animal Behaviour Science, 104 (3–4): 199–235, https://doi.org/10.1016/j.applanim.2006.09.001.CrossRefGoogle Scholar
  3. Bolasina S, Tagawa M, Yamashita Y, Tanaka M. 2006. Effect of stocking density on growth, digestive enzyme activity and cortisollevel in larvae and juveniles of Japanese flounder, Paralichthys olivaceus. Aquaculture, 259 (1–4): 432–443, https://doi.org/10.1016/j.aquaculture.2006.05. 021.CrossRefGoogle Scholar
  4. Bonga S E W. 1997. The stress response in fish. Physiological Reviews, 77 (3): 591–625.CrossRefGoogle Scholar
  5. Carter P. 1978. A convenient method for the determination of nonspecific binding in commercially available solid phase iodine labeled radioimmunoassay kits. Clinical Biochemistry, 11 (3): 97–100, https://doi.org/10.1016/S0009–9120(78)90070–X.CrossRefGoogle Scholar
  6. Chi L, Li X, Liu Q H, Liu Y. 2017. Photoperiod regulate gonad development via kisspeptin/kissr in hypothalamus and saccus vasculosus of Atlantic salmon ( Salmo salar ). PLoS One, 12 (2): e0169569, https://doi.org/10.1371/journal. pone.0169569.CrossRefGoogle Scholar
  7. Costas B, Aragão C, Dias J, Afonso A, Conceicao L E C. 2013. Interactive effects of a high–quality protein diet and high stocking density on the stress response and some innate immune parameters of Senegalese sole Solea senegalensis. Fish Physiology and Biochemistry, 39: 1 141–1 151, https://doi.org/10.1007/s10695–013–9770–1.CrossRefGoogle Scholar
  8. Ellis T, North B, Scott A P, Bromage N R, Porter M, Gadd D. 2002. The relationships between stocking density and welfare in farmed rainbow trout. Journal of Fish Biology, 61 (3): 493–531, https://doi.org/10.1006/jfbi. 2002. 2057.CrossRefGoogle Scholar
  9. Geng X, Dong X H, Tan B P, Yang Q H, Chi S Y, Liu H Y, Liu X Q. 2012. Effects of dietary probiotic on the growth performance, non–specific immunity and disease resistance of cobia, Rachycentron canadum. Aquacult ure Nutr ition, 18 (1): 46–55, https://doi.org/10.1111/j. 1365–2095.2011.00875.x.CrossRefGoogle Scholar
  10. Greaves K, Tuene S. 2001. The form and context of aggressive behaviour in farmed Atlantic halibut ( Hippoglossus hippoglossus L.). Aquaculture, 193 (1–2): 139–147, https://doi.org/10.1016/S0044–8486(00)00476–2.CrossRefGoogle Scholar
  11. Hori T S, Gamperl A K, Afonso L O, Johnson S C, Hubert S, Kimball J, Bowman S, Rise M L. 2010. Heat–shock responsive genes identified and validated in Atlantic cod ( Gadus morhua) liver, head kidney and skeletal muscle using genomic techniques. BMC Genomics, 11: 72, https://doi.org/7210.1186/1471–2164–11–72.CrossRefGoogle Scholar
  12. Hosfeld C D, Hammer J, Handeland S O, Fivelstad S, Stefansson S O. 2009. Effects of fish density on growth and smoltification in intensive production of Atlantic salmon ( Salmo salar L.). Aquaculture, 294 (3–4): 236–241, https://doi.org/10.1016/j.aquaculture.2009.06.003.CrossRefGoogle Scholar
  13. Ingram G A. 1980. Substances involved in the natural resistance of fish to infection–a review. Journal of Fish Biology, 16 (1): 23–60, https://doi.org/10.1111/j.1095–8649. 1980.tb03685.x.CrossRefGoogle Scholar
  14. Laiz–Carrión R, Viana I R, Cejas J R, Ruiz–Jarabo I, Jerez S, Martos J A, Eduardo A B, Mancera J M. 2012. Influence of food deprivation and high stocking density on energetic metabolism and stress response in red porgy, Pagrus pagrus L. Aquaculture International, 20 (3): 585–599, https://doi.org/10.1007/s10499–011–9488–y.CrossRefGoogle Scholar
  15. Laursen D C, Silva P I M, Larsen B K, Höglund E. 2013. High oxygen consumption rates and scale loss indicate elevated aggressive behaviour at low rearing density, while elevated brain serotonergic activity suggests chronic stress at high rearing densities in farmed rainbow trout. Physiology & Behavior, 122: 147–154, https://doi. org/10.1016/j.physbeh.2013.08.026.CrossRefGoogle Scholar
  16. Leung L Y, Kwong A K Y, Man A K Y, Woo N Y S. 2008. Direct actions of cortisol, thyroxine and growth hormone on IGF–I mRNA expression in sea bream hepatocytes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 151 (4): 705–710, https://doi.org/10.1016/j.cbpa.2008.08.023.CrossRefGoogle Scholar
  17. Li M J, Yin Y C, Hua H, Sun X M, Luo T, Wang J A, Jiang Y F. 2010. The reciprocal regulation ofγ–synuclein and IGF–I receptor expression creates a circuit that modulates IGF–I signaling. Journal of Biological Chemistry, 285 (40): 30 480–30 488, https://doi.org/10.1074/jbc. M110.131698.CrossRefGoogle Scholar
  18. Li X, Liu Y, Blancheton J P. 2013. Effect of stocking density on performances of juvenile turbot ( Scophthalmus maximus ) in recirculating aquaculture systems. Chinese Journal of Oceanology and Limnology, 31 (3): 514–522, https://doi. org/10.1007/s00343–013–2205–0.CrossRefGoogle Scholar
  19. Liu B L, Liu Y, Wang X P. 2015. The effect of stocking density on growth and seven physiological parameters with assessment of their potential as stress response indicators for the Atlantic salmon ( Sa l mo salar ). Mar Freshwat Behav Physiol., 48 (3): 177–192, https://doi.org/10.1080/1 0236244.2015.1034956.CrossRefGoogle Scholar
  20. López–Patiño M A, Conde–Sieira M, Gesto M, Librán–Pérez M, Soengas J L, Míguez J M. 2013. Melatonin partially minimizes the adverse stress effects in Senegalese sole ( Solea senegalensis ). Aquaculture, 388–391: 165–172, https://doi.org/10.1016/j.aquaculture.2013.01.023.CrossRefGoogle Scholar
  21. Martins C I M, Eding E H, Verdegem M C J, Heinsbroek L T N, Schneider O, Blancheton J P, d'Orbcastel E R, Verreth J A J. 2010. New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability. Aquacultural Engineering, 43 (3): 83–93, https://doi.org/10.1016/j.aquaeng.2010.09. 002.CrossRefGoogle Scholar
  22. Montero D, Izquierdo M S, Tort L, Robaina L, Vergara J M. 1999. High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles. Fish Physiology and Biochemistry, 20 (1): 53–60, https://doi. org/10.1023/A:1007719928905.CrossRefGoogle Scholar
  23. Nardocci G, Navarro C, Cortés P P, Imarai M, Montoya M, Valenzuela B, Jara P, Acuña–Castillo C, Fernández R. 2014. Neuroendocrine mechanisms for immune system regulation during stress in fish. Fish & Shellfish Immunology, 40 (2): 531–538, https://doi.org/10.1016/j. fsi.2014.08.001.CrossRefGoogle Scholar
  24. Prusty A K, Kohli M P S, Sahu N P, Pal A K, Saharan N, Mohapatra S, Gupta S K. 2011. Effect of short term exposure of fenvalerate on biochemical and haematological responses in Labeo rohita (Hamilton) fingerlings. Pestic ide Biochemistry and Physiology, 100 (2): 124–129, https://doi.org/10.1016/j.pestbp.2011.02.010.CrossRefGoogle Scholar
  25. Salas–Leiton E, Anguis V, Martín–Antonio B, Crespo D, Planas J V, Infante C, Cañavate J P, Manchado M. 2010. Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole ( Solea senegalensis ): potential effects on the immune response. Fish & Shellfish Immunology, 28 (2): 296–302, https://doi.org/10.1016/j. fsi.2009.11.006.CrossRefGoogle Scholar
  26. Schmid A C, Lutz I, Kloas W, Reinecke M. 2003. Thyroid hormone stimulates hepatic IGF–I mRNA expression in a bony fish, the tilapia Oreochromis mossambicus, in vitro and in vivo. General and Comparative Endocrinology, 130 (2): 129–134, https://doi.org/10.1016/S0016–6480 (02)00577–4.CrossRefGoogle Scholar
  27. Schmid A C, Reinecke M, Kloas W. 2000. Primary cultured hepatocytes of the bony fish, Oreochromis mossambicus, the tilapia: a valid toolfor physiological studies on IGF–I expression in liver. The Journal of Endocrinology, 166 (2): 265–273, https://doi.org/10.1677/joe.0.1660265.CrossRefGoogle Scholar
  28. Schram E, Van der Heul J W, Kamstra A, Verdegem M C J. 2006. Stocking density–dependent growth of Dover sole ( Solea solea ). Aquaculture, 252 (2–4): 339–347, https://doi.org/10.1016/j.aquaculture.2005.07.011.CrossRefGoogle Scholar
  29. Tort L. 2011. Stress and immune modulation in fish. Developmental and Comparative Immunology., 35 (12): 1 366–1 375, https://doi.org/10.1016/j.dci.2011.07.002.CrossRefGoogle Scholar
  30. Yarahmadi P, Miandare H K, Fayaz S, Caipang C M A. 2016. Increased stocking density causes changes in expression of selected stress–and immune–related genes, humoral innate immune parameters and stress responses of rainbow trout ( Oncorhynchus mykiss ). Fish & Shellfish Immunology, 48: 43–53, https://doi.org/10.1016/j.fsi. 2015.11.007.CrossRefGoogle Scholar
  31. Zhang X N, Tian H, Wang W, Ru S G. 2014. Monocrotophos pesticide decreases the plasma levels of total 3,3',5–triiodol–thyronine and alters the expression of genes associated with the thyroidal axis in female goldfish ( Carassius auratus ). PLoS One., 9 (9): e108972, https://doi.org/10. 1371/journal.pone.0108972.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yanfeng Wang
    • 1
    • 2
    • 3
  • Liang Chi
    • 1
    • 2
    • 3
  • Qinghua Liu
    • 4
  • Yongshuang Xiao
    • 1
    • 2
    • 3
  • Daoyuan Ma
    • 1
    • 2
    • 3
  • Zhizhong Xiao
    • 1
    • 2
    • 3
  • Shihong Xu
    • 1
    • 2
    • 3
    Email author
  • Jun Li
    • 1
    • 2
    • 3
    Email author
  1. 1.CAS Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Center for Ocean Mega-ScienceChinese Academy of SciencesQingdaoChina
  4. 4.College of Veterinary MedicineQingdao Agricultural UniversityQingdaoChina

Personalised recommendations