Advertisement

Specific genetic variation in two non-motile substrains of the model cyanobacterium Synechocystis sp. PCC 6803

  • Jun Chen (陈军)
  • Wenjun Shi (史文军)
  • Wenjun Li (李文军)
  • Gao Chen (陈高)
  • Song Qin (秦松)
Article
  • 1 Downloads

Abstract

Synechocystis sp. PCC 6803 is a model organism widely used in cyanobacterium biology and biotechnology. To know the genetic background of substrains of Synechocystis sp. PCC 6803 is important for further research and application. In this study, we reported the genome sequences of two non-motile wild-type substrains of Synechocystis sp. PCC 6803 using whole genome resequencing. 55/56 putative single nucleotide polymorphisms (SNPs) and 8/9 Indels (insertion and deletion) were identified. Among these, 47 SNPs were found in both the GT-AR and GT-CH strains, and 8 were unique to GT-AR and 9 were unique to GT-CH. All of these variations were annotated in metabolism pathway referred to KEGG database. Meanwhile, the deletion in slr0332 gene was detected in these two strains, which attributed to the non-motile phenotype of them and suggested that the insertion in spkA gene was not essential for non-motile phenotype. These resequencing data provide the genetic background information of these two strains and highlighted the microevolution over decades of laboratory cultivation.

Keywords

Synechocystis sp. PCC 6803 genome resequencing non-motile genetic background 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

343_2019_7291_MOESM1_ESM.pdf (848 kb)
Supplementary material, approximately 849 KB.

References

  1. Allahverdiyeva Y, Ermakova M, Eisenhut M, Zhang P P, Richaud P, Hagemann M, Cournac L, Aro E M. 2011. Interplay between flavodiiron proteins and photorespiration in Synechocystis sp. PCC 6803. Journal of Biological Chemistry, 286 (27): 24007–24014.Google Scholar
  2. Anderson S L, McIntosh L. 1991. Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC6803: a blue-light-requiring process. J ournal of Bacteriol ogy, 173 (9): 2761–2767.Google Scholar
  3. Bhaya D, Bianco N R, Bryant D, Grossman A. 2000. Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803. Molecular Microbiology, 37 (4): 941–951.CrossRefGoogle Scholar
  4. Bhaya D, Watanabe N, Ogawa T, Grossman A R. 1999. The role of an alternative sigma factor in motility and pilus formation in the cyanobacterium Synechocystis sp. strain PCC6803. Proceedings of the National Academy of Sciences of the United States of America, 96 (6): 3188–3193.CrossRefGoogle Scholar
  5. Buchfink B, Xie C, Huson D H. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12 (1): 59–60.CrossRefGoogle Scholar
  6. Chen K, Wallis J W, McLellan M D, Larson D E, Kalicki J M, Pohl C S, McGrath S D, Wendl M C, Zhang Q Y, Locke D P, Shi X Q, Fulton R S, Ley T J, Wilson R K, Ding L, Mardis, E R. 2009. BreakDancer: an algorithm for highresolution mapping of genomic structural variation. Nat ure Methods, 6 (9): 677–681.CrossRefGoogle Scholar
  7. Dexter J, Fu P C. 2009. Metabolic engineering of cyanobacteria for ethanol production. Energy & Environmental Science., 2 (8): 857–864.CrossRefGoogle Scholar
  8. Ding Q L, Chen G, Wang Y L, Wei D. 2015. Identification of specific variations in a non-motile strain of cyanobacterium Synechocystis sp. PCC 6803 originated from ATCC 27184 by whole genome resequencing. International Journal of Molecular Sciences, 16 (10): 24081–24093.Google Scholar
  9. Dismukes G C, Carrieri D, Bennette N, Ananyev G M, Posewitz M C. 2008. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Current Opinion in Biotechnology, 19 (3): 235–240.CrossRefGoogle Scholar
  10. Gao Q Q, Wang W H, Zhao H, Lu X F. 2012. Effects of fatty acid activation on photosynthetic production of fatty acidbased biofuels in Synechocystis sp. PCC 6803. Biotechnology for Biofuels, 5: 17.Google Scholar
  11. Hihara Y, Ikeuchi M. 1997. Mutation in a novel gene required for photomixotrophic growth leads to enhanced photoautotrophic growth of Synechocystis sp. PCC 6803. Photosynthesis Research, 53 (2-3): 243–252.Google Scholar
  12. Ikeuchi M, Tabata S. 2001. Synechocystis sp. PCC 6803—a useful tool in the study of the genetics of cyanobacteria. Photosynthesis Research, 70 (1): 73–83.Google Scholar
  13. Imamura S, Yoshihara S, Nakano S, Shiozaki N, Yamada A, Tanaka K, Takahashi H, Asayama M, Shirai M. 2003. Purification, characterization, and gene expression of all sigma factors of RNA polymerase in a cyanobacterium. J ournal of Mol ecular Biol ogy, 325 (5): 857–872.CrossRefGoogle Scholar
  14. Kaneko T, Nakamura Y, Sasamoto S, Watanabe A, Kohara M, Matsumoto M, Shimpo S, Yamada M, Tabata S. 2003. Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. DNA Res earch, 10 (5): 221–228.Google Scholar
  15. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res earch, 3 (3): 109–136.Google Scholar
  16. Kanesaki Y, Shiwa Y, Tajima N, Suzuki M, Watanabe S, Sato N, Ikeuchi M, Yoshikawa H. 2012. Identification of substrain-specific mutations by massively parallel wholegenome resequencing of Synechocystis sp. PCC 6803. DNA Res earch, 19 (1): 67–79.Google Scholar
  17. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. 2009. Circos: an information aesthetic for comparative genomics. Genome Res earch, 19 (9): 1639–1645.CrossRefGoogle Scholar
  18. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25 (14): 1754–1760.CrossRefGoogle Scholar
  19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25 (16): 2078–2079.CrossRefGoogle Scholar
  20. McCormick A J, Bombelli P, Lea-Smith D J, Bradley R W, Scott A M. Fisher A C, Smith A G, Howe C J. 2013. Hydrogen production through oxygenic photosynthesis using the cyanobacterium Synechocystis sp. PCC 6803 in a bio-photoelectrolysis cell (BPE) system. Energ y & Environ mental Sci ence, 6 (9): 2682–2690.Google Scholar
  21. Melis A. 2009. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci ence, 177 (4): 272–280.CrossRefGoogle Scholar
  22. Morris J N, Crawford T S, Jeffs A, Stockwell P A, Eaton-Rye J J, Summerfield T C. 2014. Whole genome re-sequencing of two ‘wild-type’ strains of the model cyanobacterium Synechocystis sp. PCC 6803. New Zealand Journal of Botany, 52 (1): 36–47.CrossRefGoogle Scholar
  23. Nakajima T, Kajihata S, Yoshikawa K, Matsuda F, Furusawa C, Hirasawa T, Shimizu H. 2014. Integrated metabolic flux and omics analysis of Synechocystis sp. PCC 6803 under mixotrophic and photoheterotrophic conditions. Plant and Cell Physiology, 55 (9): 1605–1612.Google Scholar
  24. Rippka R, Deruelles J, Waterbury J B, Herdman M, Stanier R Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiolog y, 111 (1): 1–61.Google Scholar
  25. Sambrook J, Russell D W. 2000. Molecular Cloning: A Laboratory Manual, 3 Vols. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Google Scholar
  26. Stanier R Y, Kunisawa R, Mandel M, Cohen-Bazire G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol ogy Rev iews, 35 (2): 171–205.Google Scholar
  27. Tajima N, Sato S, Maruyama F, Kaneko T, Sasaki N V, Kurokawa K, Ohta H, Kanesaki Y, Yoshikawa H, Tabata S, Ikeuchi M, Sato N. 2011. Genomic structure of the cyanobacterium Synechocystis sp. PCC 6803 strain GT-S. DNA Res earch, 18 (5): 393–399.Google Scholar
  28. Takahashi H, Uchimiya H, Hihara Y. 2008. Difference in metabolite levels between photoautotrophic and photomixotrophic cultures of Synechocystis sp. PCC 6803 examined by capillary electrophoresis electrospray ionization mass spectrometry. Journal of Experimental Botany, 59 (11): 3009–3018.Google Scholar
  29. Tan X M, Yao L, Gao Q Q, Wang W H, Qi F X, Lu X F. 2011. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metabolic Engineering, 13 (2): 169–176.CrossRefGoogle Scholar
  30. Trautmann D, Voβ B, Wilde A, Al-Babili S, Hess W R. 2012. Microevolution in cyanobacteria: re-sequencing a motile substrain of Synechocystis sp. PCC 6803. DNA Research, 19 (6): 435–448.Google Scholar
  31. Varman A M, Xiao Y, Pakrasi H B, Tang Y J. 2013. Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanol production. Appl ied and Environ mental Microb iology, 79 (3): 908–914.Google Scholar
  32. Williams J G K. 1988. Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods in Enzymology, 167: 766–778.CrossRefGoogle Scholar
  33. Xu W D, McFadden B A. 1997. Sequence analysis of plasmid pCC5.2 from cyanobacterium Synechocystis PCC 6803 that replicates by a rolling circle mechanism. Plasmid, 37 (2): 95–104.CrossRefGoogle Scholar
  34. Yang X Y, McFadden B A. 1993. A small plasmid, pCA2.4, from the cyanobacterium Synechocystis sp. strain PCC 6803 encodes a rep protein and replicates by a rolling circle mechanism. J ournal of Bacteriol ogy, 175 (13): 3981–3991.Google Scholar
  35. Yang X Y, McFadden B A. 1994. The complete DNA sequence and replication analysis of the plasmid pCB2.4 from the cyanobacterium Synechocystis PCC 6803. Plasmid, 31 (2): 131–137.CrossRefGoogle Scholar
  36. Yoshihara S, Geng X X, Okamoto S, Yura K, Murata T, Go M, Ohmori M, Ikeuchi M. 2001. Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC6803. Plant and Cell Physiol ogy., 42 (1): 63–73.CrossRefGoogle Scholar
  37. Yoshikawa K, Hirasawa T, Ogawa K, Hidaka Y, Nakajima T, Furusawa C, Shimizu H. 2013. Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions. Biotechnology Journal, 8 (5): 571–580.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jun Chen (陈军)
    • 1
    • 2
  • Wenjun Shi (史文军)
    • 1
    • 2
  • Wenjun Li (李文军)
    • 1
  • Gao Chen (陈高)
    • 3
  • Song Qin (秦松)
    • 1
  1. 1.Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Biotechnology Research CentreShandong Academy of Agricultural SciencesJinanChina

Personalised recommendations