Advertisement

Primary molecular basis of androgenic gland endocrine sex regulation revealed by transcriptome analysis in Eriocheir sinensis

  • Chengwen Song
  • Lei Liu
  • Min Hui
  • Yuan Liu
  • Hourong Liu
  • Zhaoxia Cui
Article
  • 7 Downloads

Abstract

In crustaceans, the male sexual differentiation and maintenance are specially regulated by androgenic gland (AG). However, little is known about the genes involved in the regulation process. RNA-Seq was performed on AG with ejaculatory duct (AG_ED) and ejaculatory duct (ED) as control in Eriocheir sinensis, one of the most important economic and fishery crabs with typically sex dimorphism. A total of 925 unigenes were identified as differentially expressed genes (DEGs) and the expression of nine genes randomly selected was confirmed by qRT-PCR. 667 unigenes were up-regulated in AG_ED, being supposed to be AG preferential genes. Among them, the full length of insulin-like androgenic gland factor (IAG) cDNA named as Es-IAG was obtained as a logo gene of AG, which together with the genes insulin-like receptor (INR), and single insulin binding domain protein (SIBD), might constitute the sex regulation pathway. Several sex related genes were identified, and their function will have to be investigated. Also, the identification of juvenile hormone epoxide hydrolase 1 (JHEH1), ecdysteroid 22-hydroxylase (DIB) and ecdysone receptor (ECR) preliminarily clarified the molecular regulation mechanism of eyestalk-AG-testis axis, which plays important roles in molting and reproduction. The results will enhance our understanding for the molecular basis of the AG involved in male sex regulation in crabs.

Keyword

androgenic gland comparative transcriptome Eriocheir sinensis insulin-like androgenic gland factor (IAG) sex regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

343_2019_7254_MOESM1_ESM.jpg (208 kb)
Supplementary material, approximately 208 KB.
343_2019_7254_MOESM2_ESM.jpg (144 kb)
Supplementary material, approximately 144 KB.
343_2019_7254_MOESM3_ESM.jpg (174 kb)
Supplementary material, approximately 174 KB.
343_2019_7254_MOESM4_ESM.jpg (251 kb)
Supplementary material, approximately 251 KB.
343_2019_7254_MOESM5_ESM.jpg (191 kb)
Supplementary material, approximately 191 KB.
343_2019_7254_MOESM6_ESM.xlsx (22 kb)
Supplementary material, approximately 21.5 KB.

References

  1. Aflalo E D, Hoang T T T, Nguyen V H, Lam Q, Nguyen D M, Trinh Q S, Raviv S, Sagi A. 2006. A novel two–step procedure for mass production of all–male populations of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture, 256 (1–4): 468–478.CrossRefGoogle Scholar
  2. Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biology, 11 (10): R106.Google Scholar
  3. Armstrong S P, Caunt C J, Fowkes R C, Tsaneva–Atanasova K, McArdle C A. 2009. Pulsatile and sustained gonadotropinreleasing hormone (GnRH) receptor signaling: does the Ca 2+ /NFAT signaling pathway decode GnRH pulse frequency? Journal of Biological Chemistry, 284 (51): 35 746–35 757.CrossRefGoogle Scholar
  4. Asazuma H, Nagata S, Kono M, Nagasawa H. 2007. Molecular cloning and expression analysis of ecdysone receptor and retinoid X receptor from the kuruma prawn, Marsupenaeus japonic u s. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 148 (2): 139–150.CrossRefGoogle Scholar
  5. Bliss S P, Navratil A M, Xie J J, Roberson M S. 2010. GnRH signaling, the gonadotrope and endocrine controlof fertility. Frontiers in Neuroendocrinology, 31 (3): 322–340.CrossRefGoogle Scholar
  6. Chandler J C, Aizen J, Elizur A, Battaglene S C, Ventura T. 2015. Male sexual development and the androgenic gland: novel insights through the de novo assembled transcriptome of the Eastern spiny lobster, Sagmariasus verreauxi. Sexual Development, 9 (6): 338–354.CrossRefGoogle Scholar
  7. Chang E S, Mykles D L. 2011. Regulation of crustacean molting: a review and our perspectives. General and Comparative Endocrinology, 172 (3): 323–330.CrossRefGoogle Scholar
  8. Charniaux–Cotton H. 1955. Le déterminisme hormonal des caractères sexuels d’ Orchestia gammarella (Crustacé Amphipode). Comptes Rendus de l’Academie des Sciences, 240: 1 487–1 489.Google Scholar
  9. Chung A C K, Durica D S, Hopkins P M. 1998. Tissue–specific patterns and steady–state concentrations of ecdysteroid receptor and retinoid–X–receptor mRNA during the molt cycle of the fiddler crab, Uca pugilator. General and Comparative Endocrinology, 109 (3): 375–389.CrossRefGoogle Scholar
  10. Chung J S, Manor R, Sagi A. 2011. Cloning of an insulin–like androgenic gland factor (IAG) from the blue crab, Callinectes sapidus: implications for eyestalk regulation of IAG expression. General and Comparative Endocrinology, 173 (1): 4–10.CrossRefGoogle Scholar
  11. Cui Z X, Li X H, Liu Y, Song C W, Hui M, Shi G H, Luo D L, Li Y D. 2013. Transcriptome profiling analysis on whole bodies of microbial challenged Eriocheir sinensis larvae for immune gene identification and SNP development. PLoS O ne, 8 (12): e82156.CrossRefGoogle Scholar
  12. Dittel A I, Epifanio C E. 2009. Invasion biology of the Chinese mitten crab Eriochier sinensis: a brief review. Journal of Experimental Marine Biology and Ecology, 374 (2): 79–92.CrossRefGoogle Scholar
  13. Du Y X, Ma K Y, Qiu G F. 2015. Discovery of the genes in putative GnRH signaling pathway with focus on characterization of GnRH–like receptor transcripts in the brain and ovary of the oriental river prawn Macrobrachium nipponense. Aquaculture, 442: 1–11.CrossRefGoogle Scholar
  14. Durica D S, Chung A C K, Hopkins P M. 1999. Characterization of EcR and RXR gene homologs and receptor expression during the molt cycle in the crab, Uca pugilator. Integrative and Comparative Biology, 39 (4): 758–773.Google Scholar
  15. Durica D S, Wu X H, Anilkumar G, Hopkins P M, Chung A C K. 2002. Characterization of crab EcR and RXR homologs and expression during limb regeneration and oocyte maturation. Molecular and Cellular Endocrinology, 189 (1–2): 59–76.CrossRefGoogle Scholar
  16. Gai Y C, Wang L L, Song L S, Zhao J M, Qiu L M, Xing K Z. 2010. A putative endocrine factor SIBD (single insulin binding domain protein) involved in immune response of Chinese mitten crab Eriocheir sinensis. Fish & Shellfish Immunology, 28 (1): 10–17.CrossRefGoogle Scholar
  17. Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, Chen Z H, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad–Toh K, Friedman N, Regev A. 2011. Full–length transcriptome assembly from RNA–Seq data without a reference genome. Nature Biotechnology, 29 (7): 644–652.CrossRefGoogle Scholar
  18. Guan W B. 2003. Studies on the structure and function of male and female reproductive system and spermatophore artifical transfer of the mud crab Scylla serrata (Forskal). Xiamen University, Xiamen. (in Chinese with English abstract)Google Scholar
  19. Hansen D, Pilgrim D. 1999. Sex and the single worm: sex determination in the nematode C. elegans. Mechanisms of Development, 83 (1–2): 3–15.CrossRefGoogle Scholar
  20. He L, Wang Q, Jin X K, Wang Y, Chen L L, Liu L H, Wang Y. 2012. Transcriptome profiling of testis during sexual maturation stages in Eriocheir sinensis using Illumina sequencing. PLoS O ne, 7 (3): e33735.CrossRefGoogle Scholar
  21. Herborg L M, Rushton S P, Clare A S, Bentley M G. 2003. Spread of the Chinese mitten crab (Eriocheir sinensis H. Milne Edwards) in Continental Europe: analysis of a historical data set. Hydrobiologia, 503 (1–3): 21–28.Google Scholar
  22. Hopkins P M. 2009. Crustacean ecdysteroids and their receptors. In: Smagghe G ed. Ecdysone: Structures and Functions. Springer, Dordrecht, p.73–97.CrossRefGoogle Scholar
  23. Hsu S Y, Kaipia A, McGee E, Lomeli M, Hsueh A J W. 1997. Bok is a pro–apoptotic Bcl–2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti–apoptotic Bcl–2 family members. Proceedings of the National Academy of Sciences of the United States of America, 94 (23): 12 401–12 406.CrossRefGoogle Scholar
  24. Huang X S, Ye H H, Huang H Y, Yang Y N, Gong J. 2014. An insulin–like androgenic gland hormone gene in the mud crab, S cylla paramamosain, extensively expressed and involved in the processes of growth and female reproduction. General and Comparative Endocrinology, 204: 229–238.CrossRefGoogle Scholar
  25. Hudson C, Clements D, Friday R V, Stott D, Woodland H R. 1997. Xsox17α and–β mediate endoderm formation in Xenopus. Cell, 91 (3): 397–405.CrossRefGoogle Scholar
  26. Hwa V, Oh Y, Rosenfeld R G. 1999. The insulin–like growth factor–binding protein (IGFBP) superfamily. Endocrine Reviews, 20 (6): 761–787.Google Scholar
  27. Jin S B, Fu H T, Zhou Q, Sun S M, Jiang S F, Xiong Y W, Gong Y S, Qiao H, Jiang W Y. 2013. Transcriptome analysis of androgenic gland for discovery of novel genes from the oriental river prawn, Macrobrachium nipponense, using Illumina Hiseq 2000. PLoS O ne, 8 (10): e76840.CrossRefGoogle Scholar
  28. Kanai Y, Kanai–Azuma M, Noce T, Saido T C, Shiroishi T, Hayashi Y, Yazaki K. 1996. Identification of two Sox17 messenger RNA isoforms, with and without the high mobility group box region, and their differential expression in mouse spermatogenesis. Journal of Cell Biology, 133 (3): 667–681.CrossRefGoogle Scholar
  29. Katakura Y. 1989. Endocrine and genetic controlof sex differentiation in the malacostracan crustacea. Invertebrate Reproduction & Development, 16 (1–3): 177–182.CrossRefGoogle Scholar
  30. Kelley K, Schmidt K E, Berg L, Sak K, Galima M M, Gillespie C, Balogh L, Hawayek A, Reyes J A, Jamison M. 2002. Comparative endocrinology of the insulin–like growth factor–binding protein. Journal of Endocrinology, 175: 3–18.CrossRefGoogle Scholar
  31. Khalaila I, Manor R, Weil S, Granot Y, Keller R, Sagi A. 2002. The eyestalk–androgenic gland–testis endocrine axis in the crayfish Cherax quadricarinatus. General and Comparative Endocrinology, 127 (2): 147–156.CrossRefGoogle Scholar
  32. Kim H W, Chang E S, Mykles D L. 2005. Three calpains and ecdysone receptor in the land crab Gecarcinus lateralis: sequences, expression and effects of elevated ecdysteroid induced by eyestalk ablation. Journal of Experimental Biology, 208 (16): 3 177–3 197.CrossRefGoogle Scholar
  33. Kopp A. 2012. Dmrt genes in the development and evolution of sexual dimorphism. Trends in Genetics, 28 (4): 175–184.CrossRefGoogle Scholar
  34. Laufer H, Ahl J S B, Sagi A. 1993. The role of juvenile hormones in crustacean reproduction. American Zoologist, 33 (3): 365–374.CrossRefGoogle Scholar
  35. Li B, Dewey C N. 2011. RSEM: accurate transcript quantification from RNA–Seq data with or without a reference genome. BMC Bioinformatics, 12: 323.CrossRefGoogle Scholar
  36. Liang S S, Zhang Z F, Yang D D, Chen Y Y, Qin Z K. 2017. Different expression of sox17 gene during gametogenesis between scallop Chlamys farreri and vertebrates. Gene Expression Patterns, 25–26: 102–108.CrossRefGoogle Scholar
  37. Liu Y, Hui M, Cui Z X, Luo D L, Song C W, Li Y D, Liu L. 2015. Comparative transcriptome analysis reveals sexbiased gene expression in juvenile Chinese mitten crab Eriocheir sinensis. PLoS One, 10 (7): e0133068.CrossRefGoogle Scholar
  38. Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real–time quantitative PCR and the \({s_j} = {\beta _j} + \overline {{\beta _{n - j}}}p\) method. Methods, 25 (4): 402–408.CrossRefGoogle Scholar
  39. Ma K Y, Lin J Y, Guo S Z, Chen Y, Li J L, Qiu G F. 2013. Molecular characterization and expression analysis of an insulin–like gene from the androgenic gland of the oriental river prawn, Macrobrachium nipponense. General and Comparative Endocrinology, 185: 90–96.CrossRefGoogle Scholar
  40. Manor R, Aflalo E D, Segall C, Weil S, Azulay D, Ventura T, Sagi A. 2004. Androgenic gland implantation promotes growth and inhibits vitellogenesis in Cherax quadricarinatus females held in individual compartments. Invertebrate Reproduction & Development, 45 (2): 151–159.CrossRefGoogle Scholar
  41. Manor R, Weil S, Oren S, Glazer L, Aflalo E D, Ventura T, Chalifa–Caspi V, Lapidot M, Sagi A. 2007. Insulin and gender: an insulin–like gene expressed exclusively in the androgenic gland of the male crayfish Cherax quadricarinatus. General and Comparative Endocrinology, 150 (2): 326–336.CrossRefGoogle Scholar
  42. Mareddy V R, Rosen O, Thaggard H B, Manor R, Kuballa A V, Aflalo E D, Sagi A, Paterson B, Elizur A. 2011. Isolation and characterization of the complete cDNA sequence encoding a putative insulin–like peptide from the androgenic gland of Penaeus monodon. Aquaculture, 318 (3–4): 364–370.CrossRefGoogle Scholar
  43. Nagaraju G P C. 2007. Is methyl farnesoate a crustacean hormone? Aquaculture, 272 (1–4): 39–54.CrossRefGoogle Scholar
  44. Nakagawa Y, Henrich V C. 2009. Arthropod nuclear receptors and their role in molting. FEBS Journal, 276 (21): 6 128–6 157.CrossRefGoogle Scholar
  45. Olmstead A W, Leblanc G A. 2002. Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna. Journal of Experimental Zoology, 293 (7): 736–739.CrossRefGoogle Scholar
  46. Qiao H, Xiong Y W, Jiang S F, Fu H T, Sun S M, Jin S B, Gong Y S, Zhang W Y. 2015. Gene expression profile analysis of testis and ovary of oriental river prawn, Macrobrachium nipponense, reveals candidate reproduction–related genes. Genetics and Molecular Research, 14 (1): 2 041–2 054.CrossRefGoogle Scholar
  47. Rosen O, Manor R, Weil S, Gafni O, Linial A, Aflalo E D, Ventura T, Sagi A. 2010. A sexual shift induced by silencing of a single insulin–like gene in crayfish: ovarian upregulation and testicular degeneration. PLoS One, 5 (12): e15281.CrossRefGoogle Scholar
  48. Rosen O, Weil S, Manor R, Roth Z, Khalaila I, Sagi A. 2013. A crayfish insulin–like–binding protein: another piece in the androgenic gland insulin–like hormone puzzle is revealed. Journal of Biological Chemistry, 288 (31): 22 289–22 298.CrossRefGoogle Scholar
  49. Rotllant G, Nguyen T V, Sbragaglia V, Rahi L, Dudley K J, Hurwood D, Ventura T, Company J B, Chand V, Aguzzi J, Mather P B. 2017. Sex and tissue specific gene expression patterns identified following de novo transcriptomic analysis of the Norway lobster, Nephrops norvegicus. BMC Genomics, 18: 622.CrossRefGoogle Scholar
  50. Senarai T, Saetan J, Tamtin M, Weerachatyanukul W, Sobhon P, Sretarugsa P. 2016. Presence of gonadotropin–releasing hormone–like peptide in the central nervous system and reproductive organs of the male blue swimming crab, Portunus pelagicus, and its effect on spermatogenesis. Cell and Tissue Research, 365 (2): 265–277.CrossRefGoogle Scholar
  51. Siangcham T, Tinikul Y, Poljaroen J, Sroyraya M, Changklungmoa N, Phoungpetchara I, Kankuan W, Sumpownon C, Wanichanon C, Hanna P J, Sobhon P. 2013. The effects of serotonin, dopamine, gonadotropinreleasing hormones, and corazonin, on the androgenic gland of the giant freshwater prawn, Macrobrachium rosenbergii. General and Comparative Endocrinology, 193: 10–18.CrossRefGoogle Scholar
  52. Smith C A, Katz M, Sinclair A H. 2003. DMRT1 is upregulated in the gonads during female–to–male sex reversal in ZW chicken embryos. Biology of Reproduction, 68 (2): 560–570.CrossRefGoogle Scholar
  53. Sroyraya M, Chotwiwatthanakun C, Stewart M J, Soonklang N, Kornthong N, Phoungpetchara I, Hanna P J, Sobhon P. 2010. Bilateral eyestalk ablation of the blue swimmer crab, Portunus pelagicus, produces hypertrophy of the androgenic gland and an increase of cells producing insulin–like androgenic gland hormone. Tissue and Cell, 42 (5): 293–300.CrossRefGoogle Scholar
  54. Storey J D. 2003. The positive false discovery rate: a Bayesian interpretation and the q–value. Annals of Statistics, 31 (6): 2 013–2 035.CrossRefGoogle Scholar
  55. Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. 2010. Transcript assembly and quantification by RNA–Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28 (5): 511–515.CrossRefGoogle Scholar
  56. Tropea C, Hermida G N, López Greco L S. 2011. Effects of androgenic gland ablation on growth and reproductive parameters of Cherax quadricarinatus males (Parastacidae, Decapoda). General and Comparative Endocrinology, 174 (2): 211–218.CrossRefGoogle Scholar
  57. Vázquez–Islas G, Guerrero–Tortolero D A, Garza–Torres R, Álvarez–Ruiz P, Mejía–Ruiz H, Campos–Ramos R. 2015. Quantitative analysis of hypertrophy and hyperactivity in the androgenic gland of eyestalk–ablated male Pacific white shrimp Litopenaeus vannamei during molt stages. Aquaculture, 439: 7–13.CrossRefGoogle Scholar
  58. Ventura T, Bose U, Fitzgibbon Q P, Smith G G, Shaw P N, Cummins S F, Elizur A. 2017. CYP450s analysis across spiny lobster metamorphosis identifies a long sought missing link in crustacean development. The Journal of Steroid Biochemistry and Molecular Biology, 171: 262–269.CrossRefGoogle Scholar
  59. Ventura T, Manor R, Aflalo E D, Weil S, Raviv S, Glazer L, Sagi A. 2009. Temporal silencing of an androgenic glandspecific insulin–like gene affecting phenotypical gender differences and spermatogenesis. Endocrinology, 150 (3): 1 278–1 286.CrossRefGoogle Scholar
  60. Ventura T, Sagi A. 2012. The insulin–like androgenic gland hormone in crustaceans: from a single gene silencing to a wide array of sexual manipulation–based biotechnologies. Biotechnology Advances, 30 (6): 1 543–1 550.CrossRefGoogle Scholar
  61. Yang M L, Wu Y, Jin S, Hou J Y, Mao Y J, Liu W B, Shen Y C, Wu L F. 2015. Flower bud transcriptome analysis of Sapium sebiferum (Linn.) Roxb. and primary investigation of drought induced flowering: pathway construction and G–Quadruplex prediction based on transcriptome. P L oS One, 10 (3): e0118479.CrossRefGoogle Scholar
  62. Young M D, Wakefield M J, Smyth G K, Oshlack A. 2010. Gene ontology analysis for RNA–seq: accounting for selection bias. Genome Biology, 11 (2): R14.Google Scholar
  63. Zhang F, Lv J J, Liu P, Gao B Q, Li J, Chen P. 2015. Cloning and expression of chitinase under low salinity stress during molting in P ortunus trituberculatus. Oceanologia et Limnologia Sinica, 46 (4): 948–957. (in Chinese with English abstract)Google Scholar
  64. Zhang F, Lv J J, Liu P, Gao B Q, Li J. 2017. Cloning and expression analysis of the cDNA of PtCht3 in Portunus trituberculatus. Progress in Fishery Sciences, 38 (2): 167–176. (in Chinese with English abstract)Google Scholar
  65. Zhang Y N, Xia Y H, Zhu J Y, Li S Y, Dong S L. 2014. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker). Journal of Chemical Ecology, 40 (5): 439–451.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chengwen Song
    • 1
    • 2
  • Lei Liu
    • 1
  • Min Hui
    • 1
  • Yuan Liu
    • 1
    • 2
  • Hourong Liu
    • 1
    • 3
  • Zhaoxia Cui
    • 1
    • 2
  1. 1.CAS Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations