Journal of Oceanology and Limnology

, Volume 36, Issue 4, pp 1157–1165 | Cite as

Polyphasic examination on Merismopedia tenuissima CHAB 7021 from Ganjiang River, China revealed the polyphyly of the genus Merismopedia (Cyanobacteria)

  • Liqin Shen (沈丽琴)
  • Suchao Ma (马苏超)
  • Fangfang Cai (蔡芳芳)
  • Gongliang Yu (虞功亮)
  • Shouchun Li (李守淳)
  • Renhui Li (李仁辉)
ICTC-10 Special Issue: Cyanobacteria and cyanotoxins: responses and detection


Species in the cyanobacterial genus Merismopedia are present in freshwaters at different trophic levels, with some species even as the components of cyanobacterial blooms. However, species diversity in this genus was not fully verified by molecular investigation and polyphasic taxonomic studies. In this study, Merismopedia-like strain tenuissima CHAB 7021 was isolated from Ganjiang River in Jiangxi Province, China, and polyphasic characterization of this strain was performed by morphological observation, ultrastructural examination, chemical detection of pigments and phylogenetic analysis based on 16S rRNA gene sequences. Morphological identification of the strain was supported by the ultrastructural features, as the tiny species Merismopedia tenuissima Lemmermann. The phylogeny based on 16S rRNA gene sequences revealed at least three clades formed by the strains of Merismopedia. The three M. tenuissima strains including M. tenuissima CHAB 7021 was gathered in clade III with distant relationship to the clade I formed by the six Merismopedia strains including the type species M. punctata, and such a genetic distance may propose Merismopedia tenuissima to separate from Merismopedia genus. However intermixture relationship in between strains of M. punctate and M. glauca in the phylogenetic tree still complicated the taxonomic status in the genus Merismopedia. The process for taxonomic revision in the Merismopedia genus still await for examination and further information on more strains of type species M. punctata.


cyanobacteria Merismopedia polyphasic phylogeny taxonomic revision 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Castenholz R W, Wilmotte A, Herdman M, Rippka R, Waterbury J B, Iteman I, Hoffmann L. 2001. Phylum BX. cyanobacteria. In: Boone D R ed. Bergey’s Manual ® of Systematic Bacteriology. Springer, New York. p.473–599.Google Scholar
  2. Castiglioni B, Rizzi E, Frosini A, Sivonen K, Rajaniemi P, Rantala A, Mugnai M A, Ventura S, Wilmotte A, Boutte C, Grubisic S, Balthasart P, Consolandi C, Bordoni R, Mezzelani A, Battaglia C, De Bellis G. 2004. Development of a universal microarray based on the ligation detection reaction and 16S rRNA gene polymorphism to target diversity of cyanobacteria. Applied and Environmental Microbiology, 70 (12): 7 161–7 172.CrossRefGoogle Scholar
  3. Dantas Ê W, Moura A N, Do Carmo Bittencourt-Oliveira M. 2011. Cyanobacterial blooms in stratified and destratified eutrophic reservoirs in semi-arid region of Brazil. Anais da Academia Brasileira de Ciências, 83 (4): 1 327–1 338.CrossRefGoogle Scholar
  4. Desikachary T V. 1959. Cyanophyta: ICAR Monographs on Algae. Indian Council of Agricultural Research, New Delhi, Indian. 686p.Google Scholar
  5. Furtado A L F F, Do Carmo Calijuri C, Lorenzi A S, Honda R Y, Genuário D B, Fiore M F. 2009. Morphological and molecular characterization of cyanobacteria from a Brazilian facultative wastewater stabilization pond and evaluation of microcystin production. Hydrobiologia, 627 (1): 195–209.CrossRefGoogle Scholar
  6. Geitler L. 1932. Cyanophyceae. In: Rabenhorstïs L ed. Kryptogamen Flora Von Deutschland, Österreich und der Schweiz. Akademische Verlagsgesellschaft, Leipzig, Germany. 1 196p.Google Scholar
  7. Gkelis S, Rajaniemi P, Vardaka E, Moustaka-Gouni M, Lanaras T, Sivonen K. 2005. Limnothrix redekei (Van Goor) Meffert (Cyanobacteria) strains from Lake Kastoria, Greece form a separate phylogenetic group. Microbial Ecology, 49 (1): 176–182.CrossRefGoogle Scholar
  8. Guindon S, Dufayard J F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: assessing the Performance of PhyML 3.0. Systematic Biology, 59 (3): 307–321.CrossRefGoogle Scholar
  9. Hall T A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95–98.Google Scholar
  10. Hörnström E. 1999. Long-term phytoplankton changes in acid and limed lakes in SW Sweden. Hydrobiologia, 394: 93–102.CrossRefGoogle Scholar
  11. Ichimura T. 1979. Media for freshwater cyanobacteria. In: Nishizawa K, Chihara M eds. Methods in Phycology. Kyouritsu Shuppan, Tokyo, Japan. p.295–296.Google Scholar
  12. Joosten A M T. 2006. Flora of the Blue-Green Algae of the Netherlands. I. The Non-Filamentous Species of Inland Waters. 2 nd edn. KNNV Publishing, Utrecht, the Netherlands. 239p.Google Scholar
  13. Kaas H, Koch C, Larsen J. 1985. Algal studies of the Danish Wadden Sea. III. Blue-green algae in tidal flat sediments (sand flats and lower salt-marsh) at Rejsby: taxonomy and ecology. Opera Bot anica, 79: 38–61.Google Scholar
  14. Komárek J, Anagnostidis K. 1986. Modern approach to the classification system of cyanophytes 2-chroococcales. Algological Studies, 43: 157–226.Google Scholar
  15. Komárek J, Anagnostidis K. 1999. Cyanoprokaryota 1. Teil/part I: chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D eds. Süßwasserflora von Mitteleuropa, 19/1. Spektrum Akademischer Verlag, Heidelberg, Germany. 548p.Google Scholar
  16. Komárek J, Kaštovský J, Mareš J, Johansen J R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86 (4): 295–335.Google Scholar
  17. Kumar S, Stecher G, Tamura K. 2016. Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33 (7): 1 870–1 874.CrossRefGoogle Scholar
  18. Lefort V, Longueville J E, Gascuel O. 2017. SMS: smart model selection in PhyML. Molecular Biology and Evolution, 34 (9): 2 422–2 424.CrossRefGoogle Scholar
  19. Meyen F J F. 1839. Neues system der pflanzen-physiologie. Dritter band. Haude und Spenersche Buchandlung (S.J. Joseephy), Berlin, Germany. p.1–627.Google Scholar
  20. Mitchell B G. 1990. Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique. In: Proceedings of SPIE 1302, Ocean Optics X. SPIE, Orlando, FL, United States. p.137–148.CrossRefGoogle Scholar
  21. Neilan B A, Jacobs D, Del Dot Therese, Blackall L L, Hawkins P R, Cox P T, Goodman A E. 1997. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus microcystis. International Journal of Systematic and Evolutionary Microbiology, 47 (3): 693–697.Google Scholar
  22. Neilan B A, Jacobs D, Goodman A E. 1995. Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Applied and Environmental Microbiology, 61 (11): 3 875–3 883.Google Scholar
  23. Palinska K A, Liesack W, Rhiel E, Krumbein W E. 1996. Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates. Archives of Microbiology, 166 (4): 224–233.CrossRefGoogle Scholar
  24. Posada D, Crandall K A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics, 14 (9): 817–818.CrossRefGoogle Scholar
  25. Rajaniemi-Wacklin P, Rantala A, Mugnai M A, Turicchia S, Ventura S, Komárková J, Lepistö L, Sivonen K. 2006. Correspondence between phylogeny and morphology of Snowella spp. and Woronichinia naegeliana, cyanobacteria commonly occurring in lakes. Journal of Phycology, 42 (1): 226–232.CrossRefGoogle Scholar
  26. Rantala A, Fewer D P, Hisbergues M, Rouhiainen L, Vaitomaa J, Börner T, Sivonen K. 2004. Phylogenetic evidence for the early evolution of microcystin synthesis. Proceedings of the National Academy of Sciences of the United States of America, 101 (2): 568–573.CrossRefGoogle Scholar
  27. Rippka R. 1988. Isolation and purification of cyanobacteria. Methods in Enzymology, 167: 3–27.CrossRefGoogle Scholar
  28. Shao J H, Xu Y, Wang Z J, Jiang Y G, Yu G L, Peng X, Li R H. 2011. Elucidating the toxicity targets of β-ionone on photosynthetic system of Microcystis aeruginosa NIES-843 (Cyanobacteria). Aquatic Toxicology, 104 (1–2): 48–55.CrossRefGoogle Scholar
  29. Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24 (8): 1 596–1 599.CrossRefGoogle Scholar
  30. Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A. 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Applied and Environmental Microbiology, 69 (9): 5 157–5 169.CrossRefGoogle Scholar
  31. Thomazeau S, Houdan-Fourmont A, Couté A, Duval C, Couloux A, Rousseau F, Bernard C. 2010. The contribution of sub-saharan African strains to the phylogeny of Cyanobacteria: focusing on the Nostocaceae (Nostocales, Cyanobacteria). Journal of Phycology, 46 (3): 564–579.CrossRefGoogle Scholar
  32. Zhu H R. 1991. Flora Algarum Sinicarum Aquae Dulcis Tomus II. Chroococcophyceae. Science Press, Beijing, China. 161p. (in Chinese)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liqin Shen (沈丽琴)
    • 1
  • Suchao Ma (马苏超)
    • 1
  • Fangfang Cai (蔡芳芳)
    • 2
    • 3
  • Gongliang Yu (虞功亮)
    • 2
  • Shouchun Li (李守淳)
    • 1
  • Renhui Li (李仁辉)
    • 2
  1. 1.College of Life ScienceJiangxi Normal UniversityNanchangChina
  2. 2.Key Lab of Algal Biology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations