Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 5, pp 1643–1654 | Cite as

Sediment bacterial communities are more complex in coastal shallow straits than in oceanic deep straits

  • Hongmei Liu (刘红梅)
  • Bin Wang (王斌)
  • Xiaoke Hu (胡晓珂)Email author
Article
  • 20 Downloads

Abstract

Straits are ideal models to investigate the bacterial community assembly in complex hydrological environments. However, few studies have focused on bacterial communities in them. Here, comparable bacterial communities in costal shallow Bohai Strait (BS) and oceanic deep Fram Strait (FS) were studied. The Shannon and Chao1 indices were both higher in BS than in FS. The relative abundances of the classes Deltaproteobacteria and Bacilli and the family Halieaceae were higher in BS than in FS, in contrast to the families OM1_clade and JTB255_marine_benthic_group, revealing typical characteristics of bacterial communities in coastal and oceanic regions. Cluster analysis based on the Bray-Curtis index showed that samples were clustered by depth layer in FS and BS, indicating that structures of bacterial communities would differ with increasing water depth in straits. Additionally, the cluster relationships among samples in abundant and rare communities were both similar to those in entire communities. However, the dissimilarities among samples showed a descending order as rare communities, entire communities and abundant communities. Network analysis indicated that the BS network was obviously more complex than the FS network. Filamentous bacteria Desulfobulbaceae exhibited high degree values in BS but not in FS, indicating key roles of Desulfobulbaceae in the BS. Our study provides different and common evidences for understanding microbial ecology in coastal shallow and oceanic deep straits

Keyword

bacterial communities Bohai Strait Fram Strait currents microbial ecological network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We thank James Klippel-Cooper in School of Biological Sciences at Flinders University for his polishing to improve the language.

References

  1. Barberan A, Bates S T, Casamayor E O, Fierer N. 2014. Using network analysis to explore co-occurrence patterns in soil microbial communities(vol 6, pg 343, 2012). ISME J., 8(4): 952.CrossRefGoogle Scholar
  2. Bienhold C, Zinger L, Boetius A, Ramette A. 2016. Diversity and biogeography of bathyal and abyssal seafloor bacteria. PLoS One, 11(1): e0148016,  https://doi.org/10.1371/journal.pone.0148016.CrossRefGoogle Scholar
  3. Bowman J P. 2006. The marine clade of the family flavobacteriaceae: the genera aequorivita, arenibacter, cellulophaga, croceibacter, formosa, gelidibacter, gillisia, maribacter, mesonia, muricauda, polaribacter, psychroflexus, psychroserpens, robiginitalea, salegentibacter, tenacibaculum, ulvibacter, vitellibacter and zobellia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E eds. The Prokaryotes: Volume 7: Proteobacteria: Delta, Epsilon Subclass. Springer, New York. p.677–694.Google Scholar
  4. Buttigieg P L, Ramette A. 2014. Biogeographic patterns of bacterial microdiversity in Arctic deep-sea sediments (HAUSGARTEN, Fram Strait). Frontiers in M icrobiology, 5: 660,  https://doi.org/10.3389/fmicb.2014.00660.Google Scholar
  5. Campbell B J, Kirchman D L. 2013. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. The ISME Journal, 7(1): 210–220,  https://doi.org/10.1038/ismej.2012.93.Google Scholar
  6. Chaffron S, Rehrauer H, Pernthaler J, von Mering C. 2010. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Research, 20(7): 947–959,  https://doi.org/10.1101/gr.104521.109.CrossRefGoogle Scholar
  7. Coutinho F H, Meirelles P M, Moreira A P B, Paranhos R P, Dutilh B E, Thompson F L. 2015. Niche distribution and influence of environmental parameters in marine microbial communities: a systematic review. PeerJ, 3: e1008,  https://doi.org/10.7717/peerj.1008.Google Scholar
  8. Coveley S, Elshahed M S, Youssef N H. 2015. Response of the rare biosphere to environmental stressors in a highly diverse ecosystem(Zodletone spring, OK, USA). PeerJ, 3: e1182,  https://doi.org/10.7717/peerj.1182.Google Scholar
  9. Doblin M A, van Sebille E. 2016. Drift in ocean currents impacts intergenerational microbial exposure to temperature. Proceedings of the National Academy of Sciences of the United States of America, 113(20): 5 700–5 705,  https://doi.org/10.1073/pnas.1521093113.CrossRefGoogle Scholar
  10. Faust K, Raes J. 2012. Microbial interactions: from networks to models. Nature Reviews Microbiology, 10(8): 538–550,  https://doi.org/10.1038/nrmicro2832.CrossRefGoogle Scholar
  11. Flynn J M, Brown E A, Chain F J J, MacIsaac H J, Cristescu M E. 2015. Toward accurate molecular identification of species in complex environmental samples: testing the performance of sequence filtering and clustering methods. Ecology and Evolution, 5(11): 2 252–2 266,  https://doi.org/10.1002/ece3.1497.CrossRefGoogle Scholar
  12. Freilich S, Kreimer A, Meilijson I, Gophna U, Sharan R, Ruppin E. 2010. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Research, 38(12): 3 857–3 868,  https://doi.org/10.1093/nar/gkq118.CrossRefGoogle Scholar
  13. Fuhrman J A, Cram J A, Needham D M. 2015. Marine microbial community dynamics and their ecological interpretation. Nature Reviews Microbiology, 13(3): 133–146,  https://doi.org/10.1038/nrmicro3417.CrossRefGoogle Scholar
  14. Gilbert J A, Steele J A, Caporaso J G, Steinbruck L, Reeder J, Temperton B, Huse S, McHardy A C, Knight R, Joint I, Somerfield P, Fuhrman J A, Field D. 2012. Defining seasonal marine microbial community dynamics. ISME J., 6(2): 298–308,  https://doi.org/10.1038/ismej.2011.107.CrossRefGoogle Scholar
  15. Gong J, Shi F, Ma B, Dong J, Pachiadaki M, Zhang X L, Edgcomb V P. 2015. Depth shapes α-and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems. Environmental Microbiology, 17(10): 3 722–3 737,  https://doi.org/10.1111/1462-2920.12763.CrossRefGoogle Scholar
  16. Hibbing M E, Fuqua C, Parsek M R, Peterson S B. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8(1): 15–25,  https://doi.org/10.1038/nrmicro2259.CrossRefGoogle Scholar
  17. Itoi S, Uchida J, Takanashi S, Narita T, Abe K, Naya S, Sugita H. 2014. The clam Meretrix lamarckii(Bivalvia: Veneridae) is a rich repository of marine lactic acid bacterial strains. Annals of Microbiology, 64(3): 1 267–1 274,  https://doi.org/10.1007/s13213-013-0771-1.CrossRefGoogle Scholar
  18. Jacob M, Soltwedel T, Boetius A, Ramette A. 2013. Biogeography of deep-sea benthic bacteria at regional scale(LTER HAUSGARTEN, Fram Strait, Arctic). PLoS One, 8(9): e72779,  https://doi.org/10.1371/journal.pone.0072779.CrossRefGoogle Scholar
  19. Kozich J J, Westcott S L, Baxter N T, Highlander S K, Schloss P D. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Applied and Environmental Microbiology, 79(17): 5 112–5 120,  https://doi.org/10.1128/AEM.01043-13.CrossRefGoogle Scholar
  20. Li A C, Qiao L L, Wan X Q, Ma W W. 2016. Distribution, flux and seasonal variation of suspended particulate matters in the Bohai Strait. Oceanologia et Limnologia Sinica, 47(2): 310–318.(in Chinese with English abstract)Google Scholar
  21. Li W, Gao K S. 2012. A marine secondary producer respires and feeds more in a high CO 2 ocean. Marine Pollution Bulletin, 64(4): 699–703,  https://doi.org/10.1016/j.marpolbul.2012.01.033.CrossRefGoogle Scholar
  22. Li Y F, Wolanski E, Zhang H. 2015. What processes control the net currents through shallow straits? A review with application to the Bohai Strait, China. Estuarine, Coastal and Shelf Science, 158: 1–11,  https://doi.org/10.1016/j.ecss.2015.03.013.CrossRefGoogle Scholar
  23. Lin M, Liu Y H, Chen W W, Wang H, Hu X K. 2014. Use of bacteria-immobilized cotton fibers to absorb and degrade crude oil. International Biodeterioration & Biodegradation, 88: 8–12,  https://doi.org/10.1016/j.ibiod.2013.11.015.CrossRefGoogle Scholar
  24. Liu J W, Liu X S, Wang M, Qiao Y L, Zheng Y F, Zhang X H. 2015. Bacterial and archaeal communities in sediments of the North Chinese marginal seas. Microbial Ecology, 70(1): 105–117,  https://doi.org/10.1007/s00248-014-0553-8.CrossRefGoogle Scholar
  25. Liu Y H, Hu X K, Liu H. 2016. Industrial-scale culturing of the crude oil-degrading marine Acinetobacter sp. strain HC8-3S. International Biodeterioration & Biodegradation, 107: 56–61,  https://doi.org/10.1016/j.ibiod.2015.11.007.CrossRefGoogle Scholar
  26. Lupatini M, Suleiman A K A, Jacques R J S, Antoniolli Z I, de Siqueira Ferreira A, Kuramae E E, Roesch L F W. 2014. Network topology reveals high connectance levels and few key microbial genera within soils. Frontiers in Environmental Science, 2: 10,  https://doi.org/10.3389/fenvs.2014.00010.CrossRefGoogle Scholar
  27. Lynch M D J, Neufeld J D. 2015. Ecology and exploration of the rare biosphere. Nature Reviews Microbiology, 13(4): 217–229,  https://doi.org/10.1038/nrmicro3400.CrossRefGoogle Scholar
  28. Madigan M T, Martinko J M, Bender K S, Buckley D H, Stahl D A, Brock T. 2014. Brock Biology of Microorganisms. 14 th edn. Pearson Benjamin Cummings, San Francisco.Google Scholar
  29. Magurran A E. 2003. Measuring Biological Diversity. Wiley-Blackwell, Oxford.Google Scholar
  30. Maruyama A, Honda D, Yamamoto H, Kitamura K, Higashihara T. 2000. Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. International Journal of Systematic and Evolutionary Microbiology, 50(2): 835–846,  https://doi.org/10.1099/00207713-50-2-835.CrossRefGoogle Scholar
  31. Molloy S. 2014. Environmental microbiology: disentangling syntrophy. Nature Reviews Microbiology, 12(1): 7,  https://doi.org/10.1038/nrmicro3194.Google Scholar
  32. Nemergut D R, Schmidt S K, Fukami T, O'Neill S P, Bilinski T M, Stanish L F, Knelman J E, Darcy J L, Lynch R C, Wickey P, Ferrenberg S. 2013. Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews, 77(3): 342–356,  https://doi.org/10.1128/MMBR.00051-12.CrossRefGoogle Scholar
  33. Pan H Q, Hu J C. 2015. Draft genome sequence of the novel strain Pseudomonas sp. 10B238 with potential ability to produce antibiotics from deep-sea sediment. Marine Genomics, 23: 55–57,  https://doi.org/10.1016/j.margen.2015.05.003.CrossRefGoogle Scholar
  34. Pedrós-Alió C. 2012. The rare bacterial biosphere. Annual R eview of M arine S cience, 4: 449–466,  https://doi.org/10.1146/annurev-marine-120710-100948.Google Scholar
  35. Piontek J, Sperling M, Nöthig E M, Engel A. 2015. Multiple environmental changes induce interactive effects on bacterial degradation activity in the Arctic Ocean. Limnology and Oceanography, 60(4): 1 392–1 410,  https://doi.org/10.1002/lno.10112.CrossRefGoogle Scholar
  36. Pontarp M, Canbäck B, Tunlid A, Lundberg P. 2012. Phylogenetic analysis suggests that habitat filtering is structuring marine bacterial communities across the globe. Microbial Ecology, 64(1): 8–17,  https://doi.org/10.1007/s00248-011-0005-7.CrossRefGoogle Scholar
  37. Schloss P D, Westcott S L, Ryabin T, Hall J R, Hartmann M, Hollister E B, Lesniewski R A, Oakley B B, Parks D H, Robinson C J, Sahl J W, Stres B, Thallinger G G, Van Horn D J, Weber C F. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23): 7 537–7 541,  https://doi.org/10.1128/AEM.01541-09.CrossRefGoogle Scholar
  38. Shao L, Li X J, Geng J H, Pang X, Lei Y C, Qiao P J, Wang L L, Wang H B. 2007. Deep water bottom current deposition in the northern South China Sea. Science in China Series D: Earth Sciences, 50(7): 1 060–1 066,  https://doi.org/10.1007/s11430-007-0015-y.CrossRefGoogle Scholar
  39. Signori C N, Thomas F, Enrich-Prast A, Pollery R C G, Sievert S M. 2014. Microbial diversity and community structure across environmental gradients in Bransfield Strait, Western Antarctic Peninsula. Frontiers in Microbiology, 5: 647,  https://doi.org/10.3389/fmicb.2014.00647.CrossRefGoogle Scholar
  40. Singh R, Paul D, Jain R K. 2006. Biofilms: implications in bioremediation. Trends in Microbiology, 14(9): 389–397,  https://doi.org/10.1016/j.tim.2006.07.001.CrossRefGoogle Scholar
  41. Spring S, Scheuner C, Göker M, Klenk H P. 2015. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Frontiers in Microbiology, 6: 281,  https://doi.org/10.3389/fmicb.2015.00281.CrossRefGoogle Scholar
  42. Sunagawa S, Coelho L P, Chaffron S, Kultima J R, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende D R, Alberti A, Cornejo-Castillo F M, Costea P I, Cruaud C, d'Ovidio F, Engelen S, Ferrera I, Gasol J M, Guidi L, Hildebrand F, Kokoszka F, Lepoivre C, Lima-Mendez G, Poulain J, Poulos B T, Royo-Llonch M, Sarmento H, Vieira-Silva S, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Bowler C, de Vargas C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Jaillon O, Not F, Ogata H, Pesant S, Speich S, Stemmann L, Sullivan M B, Weissenbach J, Wincker P, Karsenti E, Raes J, Acinas S G, Bork P, Boss E, Bowler C, Follows M, Karp-Boss L, Krzic U, Reynaud E G, Sardet C, Sieracki M, Velayoudon D. 2015. Structure and function of the global ocean microbiome. Science, 348(6237): 1 261 359,  https://doi.org/10.1126/science.1261359.CrossRefGoogle Scholar
  43. Yoshida M, Yoshida-Takashima Y, Nunoura T, Takai K. 2015. Identification and genomic analysis of temperate Pseudomonas bacteriophage PstS-1 from the Japan trench at a depth of 7000 m. Research in Microbiology, 166(9): 668–676,  https://doi.org/10.1016/j.resmic.2015.05.001.CrossRefGoogle Scholar
  44. Zhang X M, Liu W, Schloter M, Zhang G M, Chen Q S, Huang J H, Li L H, Elser J J, Han X G. 2013. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS One, 8(10): e76500,  https://doi.org/10.1371/journal.pone.0076500.CrossRefGoogle Scholar
  45. Zhou J Z, Deng Y, Luo F, He Z L, Yang Y F. 2011a. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO 2. mBio, 2(4): e00122–11,  https://doi.org/10.1128/mBio.00122-11.CrossRefGoogle Scholar
  46. Zhou J Z, Wu L Y, Deng Y, Zhi X Y, Jiang Y H, Tu Q C, Xie J P, Van Nostrand J D, He Z L, Yang Y F. 2011b. Reproducibility and quantitation of amplicon sequencingbased detection. The ISME Journal, 5(8): 1 303–1 313,  https://doi.org/10.1038/ismej.2011.11.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hongmei Liu (刘红梅)
    • 1
  • Bin Wang (王斌)
    • 2
  • Xiaoke Hu (胡晓珂)
    • 2
    Email author
  1. 1.School of OceanYantai UniversityYantaiChina
  2. 2.Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiChina

Personalised recommendations