Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 4, pp 1315–1328 | Cite as

The first complete organellar genomes of an Antarctic red alga, Pyropia endiviifolia: insights into its genome architecture and phylogenetic position within genus Pyropia (Bangiales, Rhodophyta)

  • Kuipeng Xu (徐奎鹏)
  • Xianghai Tang (唐祥海)
  • Guiqi Bi (毕桂萁)
  • Min Cao (曹敏)
  • Lu Wang (王璐)
  • Yunxiang Mao (茅云翔)
Biology
  • 63 Downloads

Abstract

Pyropia species grow in the intertidal zone and are cold-water adapted. To date, most of the information about the whole plastid and mitochondrial genomes (ptDNA and mtDNA) of this genus is limited to Northern Hemisphere species. Here, we report the sequencing of the ptDNA and mtDNA of the Antarctic red alga Pyropia endiviifolia using the Illumina platform. The plastid genome (195 784 bp, 33.28% GC content) contains 210 protein-coding genes, 37 tRNA genes and 6 rRNA genes. The mitochondrial genome (34 603 bp, 30.5% GC content) contains 26 protein-coding genes, 25 tRNA genes and 2 rRNA genes. Our results suggest that the organellar genomes of Py. endiviifolia have a compact organization. Although the collinearity of these genomes is conserved compared with other Pyropia species, the genome sizes show significant differences, mainly because of the different copy numbers of rDNA operons in the ptDNA and group II introns in the mtDNA. The other Pyropia species have 2–3 distinct intronic ORFs in their cox 1 genes, but Py. endiviifolia has no introns in its cox 1 gene. This has led to a smaller mtDNA than in other Pyropia species. The phylogenetic relationships within Pyropia were examined using concatenated gene sets from most of the available organellar genomes with both the maximum likelihood and Bayesian methods. The analysis revealed a sister taxa affiliation between the Antarctic species Py. endiviifolia and the North American species Py. kanakaensis.

Keyword

Antarctic Pyropia endiviifolia plastid and mitochondrial genomes genome structure phylogenetic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

343_2018_7088_MOESM1_ESM.pdf (736 kb)
Supplementary material, approximately 736 KB.

References

  1. Abascal F, Zardoya R, Posada D. 2005. ProtTest: selection of best-fit models of protein evolution. Bioinformatics, 21 (9): 2 104–2 105.CrossRefGoogle Scholar
  2. Brodie J A, Irvine L M. 2003. Seaweeds of the British Isles. Volume 1 Rhodophyta. Part 3B Bangiophycidae. Natural History Museum, London.Google Scholar
  3. Buschiazzo E, Ritland C, Bohlmann J, Ritland K. 2012. Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evolutionary Biology, 12: 8.Google Scholar
  4. Capella-Gutiérrez S, Silla-Martínez J M, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in largescale phylogenetic analyses. Bioinformatics, 25 (15): 1 972–1 973.CrossRefGoogle Scholar
  5. Chamberlain Y M. 1963. The identity of Monostroma endiviifolium A. and E.S. Gepp. Nova Hedwigia, 5: 151–155.Google Scholar
  6. Darling A C E, Mau B, Blattner F R, Perna N T. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome R esearch, 14 (7): 1 394–1 403.CrossRefGoogle Scholar
  7. Douglas S E. 1998. Plastid evolution: origins, diversity, trends. Current O pinion in G enetics & Development, 8 (6): 655–661.CrossRefGoogle Scholar
  8. Dutcher J A, Kapraun D F. 1994. Random amplified polymorphic DNA (RAPD) identification of genetic variation in three species of Porphyra (Bangiales, Rhodophyta). Journal of Applied Phycology, 6 (3): 267–273.CrossRefGoogle Scholar
  9. Gray M W, Burger G, Lang B F. 2001. The origin and early evolution of mitochondria. Genome Biology, 2 (6): reviews1018.1.Google Scholar
  10. Guiry M D, Guiry G M. 2017. AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway, https://doi.org/www.marinespecies.org/aphia.php?p=sourcedetails&id=37. Google Scholar
  11. Hagopian J C, Reis M, Kitajima J P, Bhattacharya D, De Oliveira M C. 2004. Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of rhodoplasts and their relationship to other plastids. Journal of Molecular Evolution, 59 (4): 464–477.CrossRefGoogle Scholar
  12. Henry R J. 2005. Plant Diversity and Evolution: Genotypic and Phenotypic Variation in Higher Plants. CABI Publishing, Wallingford, Oxfordshire, UK.CrossRefGoogle Scholar
  13. Hernandez D, François P, Farinelli L, Østerås M, Schrenzel J. 2008. De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome R esearch, 18 (5): 802–809.CrossRefGoogle Scholar
  14. Huelsenbeck J P, Ronquist F. 2001. MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics, 17 (8): 754–755.CrossRefGoogle Scholar
  15. Janouškovec J, Liu S L, Martone P T, Carré W, Leblanc C, Collén J, Keeling P J. 2013. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PLoS One, 8 (3): e59001.CrossRefGoogle Scholar
  16. Kamikawa R, Masuda I, Demura M, Oyama K, Yoshimatsu S, Kawachi M, Sako Y. 2009. Mitochondrial group II introns in the raphidophycean flagellate Chattonella spp. suggest a diatom-to-Chattonella lateral group II intron transfer. Protist, 160 (3): 364–375.CrossRefGoogle Scholar
  17. Katoh K, Kuma K I, Toh H, Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic A cids R esearch, 33 (2): 511–518.CrossRefGoogle Scholar
  18. Lee J, Cho C H, Park S I, Cho J W, Song H S, West J A, Bhattacharya D, Yoon H S. 2016. Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BMC Biology, 14: 75.CrossRefGoogle Scholar
  19. Lohse M, Drechsel O, Bock R. 2007. OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Current G enetics, 52 (5–6): 267–274.CrossRefGoogle Scholar
  20. Mayor C, Brudno M, Schwartz J R, Poliakov A, Rubin E M, Frazer K A, Pachter L S, Dubchak I. 2000. VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics, 16 (11): 1 046–1 047.CrossRefGoogle Scholar
  21. Michel F, Jacquier A, Dujon B, 1982. Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie, 64 (10): 867–881.CrossRefGoogle Scholar
  22. Mumford Jr T F, Miura A. 1988. Porphyra as food: cultivation and economics. In: Lembi C A, Waaland J R eds. Algae and Human Affairs. Cambridge University Press, Cambridge.Google Scholar
  23. Niwa K, Kikuchi N, Iwabuchi M, Aruga Y. 2004. Morphological and AFLP variation of Porphyra yezoensis Ueda form, narawaensis Miura (Bangiales, Rhodophyta). Phycological Research, 52 (2): 180–190.Google Scholar
  24. Ogihara Y, Yamazaki Y, Murai K, Kanno A, Terachi T, Shiina T, Miyashita N, Nasuda S, Nakamura C, Mori N, Takumi S, Murata N, Futo S, Tsunewaki K. 2005. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic A cids Research, 33 (19): 6 235–6 250.CrossRefGoogle Scholar
  25. Patel R K, Jain M. 2012. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One, 7 (2): e30619.CrossRefGoogle Scholar
  26. Porebski S, Bailey L G, Baum B R. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant M olecular Biology Reporter, 15 (1): 8–15.CrossRefGoogle Scholar
  27. Reyes-Prieto A, Weber A P, Bhattacharya D. 2007. The origin and establishment of the plastid in algae and plants. Annu al Review Genetics, 41: 147–168.CrossRefGoogle Scholar
  28. Rodríguez-Ezpeleta N, Brinkmann H, Burey S C, Roure B, Burger G, Löffelhardt W, Bohnert H J, Philippe H, Lang B F. 2005. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Current Biology, 15 (4): 1 325–1 330.CrossRefGoogle Scholar
  29. Ruby J G, Bellare P, DeRisi J L. 2013. PRICE: software for the targeted assembly of components of (Meta) genomic sequence data. G3: Genes, Genomes, Genetics, 3 (5): 865–880.CrossRefGoogle Scholar
  30. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30 (9): 1 312–1 313.CrossRefGoogle Scholar
  31. Sutherland J E, Lindstrom S C, Nelson W A, Brodie J, Lynch M D J, Hwang M S, Choi H G, Miyata M, Kikuchi N, Oliveira M C, Farr T, Neefus C, Mols-Mortensen A, Milstein D, Müller K M. 2011. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). Journal of Phycology, 47 (5): 1 131–1 151.CrossRefGoogle Scholar
  32. Taanman J W. 1999. The mitochondrial genome: structure, transcription, translation and replication. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1410 (2): 103–123.CrossRefGoogle Scholar
  33. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and E volution, 30 (12): 2 725–2 729.CrossRefGoogle Scholar
  34. Verbruggen H, Maggs C A, Saunders G W, Le Gall L, Yoon H S, De Clerck O. 2010. Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life. BMC Evolutionary Biology, 10: 16.CrossRefGoogle Scholar
  35. Wang L, Mao Y X, Kong F N, Li G Y, Ma F, Zhang B L, Sun P P, Bi G Q, Zhang F F, Xue H F, Cao M. 2013. Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis. PLoS One, 8 (5): e65902.CrossRefGoogle Scholar
  36. Wiencke C, Clayton M N. 1998. The life history of Porphyra endiviifolium from the South Shetland Islands, Antarctica. Polar Biology, 19 (4): 257–263.CrossRefGoogle Scholar
  37. Xie C T, Chen C S, Xu Y, Ji D H. 2010. Construction of a genetic linkage map for Porphyra h aitanensis (Bangiales, Rhodophyta) based on sequence-related amplified polymorphism and simple sequence repeat markers. Journal of Phycology, 46 (4): 780–787.CrossRefGoogle Scholar
  38. Yang E C, Kim K M, Kim S Y, Lee J, Boo G H, Lee J H, Nelson W A, Yi G M, Schmidt W E, Fredericq S, Boo S M, Bhattacharya D, Yoon H S. 2015. Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae. Genome Biology and E volution, 7 (8): 2 394–2 406.CrossRefGoogle Scholar
  39. Yoon H S, Müller K M, Sheath R G, Ott F D, Bhattacharya D. 2006. Defining the major lineages of red algae (Rhodophyta). Journal of Phycology, 42 (2): 482–492.CrossRefGoogle Scholar
  40. Zhao L, Li X, Zhang N, Zhang S D, Yi T S, Ma H, Guo Z H, Li D Z. 2016. Phylogenomic analyses of large-scale nuclear genes provide new insights into the evolutionary relationships within the rosids. Molecular Phylogenetics and Evolution, 105: 166–176.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kuipeng Xu (徐奎鹏)
    • 1
  • Xianghai Tang (唐祥海)
    • 1
  • Guiqi Bi (毕桂萁)
    • 1
  • Min Cao (曹敏)
    • 1
  • Lu Wang (王璐)
    • 1
  • Yunxiang Mao (茅云翔)
    • 1
    • 2
  1. 1.Key Laboratory of Marine Genetics and Breeding (Ocean University of China)Ministry of EducationQingdaoChina
  2. 2.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations