Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 4, pp 1189–1197 | Cite as

Convection: a neglected pathway for downward transfer of wind energy in the oceanic mixed layer

  • Yu Zhang (张钰)
  • Wei Wang (王伟)
Physics
  • 48 Downloads

Abstract

Upper-ocean turbulent mixing plays a vital role in mediating air-sea fluxes and determining mixed-layer properties, but its energy source, especially that near the base of the mixed layer, remains unclear. Here we report a potentially significant yet rarely discussed pathway to turbulent mixing in the convective mixed layer. During convection, as surface fluid drops rapidly in the form of convective plumes, intense turbulence kinetic energy (TKE) generated via surface processes such as wave breaking is advected downward, enhancing TKE and mixing through the layer. The related power, when integrated over the global ocean except near the surface where the direct effect of breaking waves dominates, is estimated at O (1)TW, comparable to that required by maintaining the Meridional Overturning Circulation (MOC). The mechanism in question therefore deserves greater research attention, especially in view of the potential significance of its proper representation in climate models.

Keyword

convective mixed layer convecting plumes turbulent kinetic energy (TKE) wind energy surface waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors would like to thank the anonymous reviewers for their valuable suggestions.

References

  1. Anis A, Moum J N. 1994. Prescriptions for heat flux and entrainment rates in the upper ocean during convection. J. Phys. Oceanogr., 24 (10): 2 142–2 155.CrossRefGoogle Scholar
  2. Anis A, Moum J N. 1995. Surface wave–turbulence interactions. Scaling ε ( z ) near the sea surface. J. Phys. Oceanogr., 25 (9): 2 025–2 045.CrossRefGoogle Scholar
  3. Burchard H. 2002. Applied Turbulence Modelling in Marine Waters. Springer, Berlin Heidelberg, Germany. p.215.Google Scholar
  4. Cerovečki I, Talley L D, Mazloff M R, Maze G. 2013. Subantarctic mode water formation, destruction, and export in the eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 43 (7): 1 485–1 511.CrossRefGoogle Scholar
  5. Craig P D, Banner M L. 1994. Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24 (12): 2 546–2 559.CrossRefGoogle Scholar
  6. D’Asaro E A. 2014. Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6: 101–115.CrossRefGoogle Scholar
  7. de Boyer Montégut C, Madec G, Fischer A S, Lazar A, Iudicone D. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res., 109 (C12): C12003, https://doi.org/10.1029/2004JC002378. CrossRefGoogle Scholar
  8. Endoh T, Matsuno T, Yoshikawa Y, Tsutsumi E. 2014. Estimates of the turbulent kinetic energy budget in the oceanic convective boundary layer. J. Oceanogr., 70 (1): 81–90.CrossRefGoogle Scholar
  9. Furuichi N, Hibiya T. 2015. Assessment of the upper-ocean mixed layer parameterizations using a large eddy simulation model. J. Geophys. Res., 120 (3): 2 350–2 369, https://doi.org/10.1002/2014JC010665. CrossRefGoogle Scholar
  10. Galperin B, Kantha L H, Hassid S, Rosati A. 1988. A quasiequilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 45 (1): 55–62.CrossRefGoogle Scholar
  11. Galperin B, Kantha L H, Mellor G L, Rosati A. 1989. Modeling rotating stratified turbulent flows with application to oceanic mixed layers. J. Phys. Oceanogr., 19 (7): 901–916.CrossRefGoogle Scholar
  12. Harcourt R R. 2013. A second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 43 (4): 673–697.CrossRefGoogle Scholar
  13. Harcourt R R. 2015. An improved second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 45 (1): 84–103.CrossRefGoogle Scholar
  14. Huang C J, Qiao F L. 2010. Wave-turbulence interaction and its induced mixing in the upper ocean. J. Geophys. Res., 115 (C4): C04026, https://doi.org/10.1029/2009JC005853. Google Scholar
  15. Iudicone D, Madec G, Blanke B, Speich S. 2008. The role of Southern Ocean surface forcings and mixing in the global conveyor. J. Phys. Oceanogr., 38 (7): 1 377–1 400.CrossRefGoogle Scholar
  16. Kantha L, Tamura H, Miyazawa Y. 2014. Comment on “Waveturbulence interaction and its induced mixing in the upper ocean” by Huang and Qiao. J. Geophys. Res., 119 (2): 1 510–1 515, https://doi.org/10.1002/2013JC009318. CrossRefGoogle Scholar
  17. Langmuir I. 1938. Surface motion of water induced by wind. Science, 87 (2250): 119–123.CrossRefGoogle Scholar
  18. Leibovich S. 1980. On wave-current interaction theories of Langmuir circulations. J. Fluid Mech., 99 (4): 715–724.CrossRefGoogle Scholar
  19. Lenschow D H. 1974. Model of the height variation of the turbulence kinetic energy budget in the unstable planetary boundary layer. J. Atmos. Sci., 31 (2): 465–474.CrossRefGoogle Scholar
  20. Lombardo C P, Gregg M C. 1989. Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer. J. Geophy. Res., 94 (C5): 6 273–6 284.CrossRefGoogle Scholar
  21. Macdonald A M, Wunsch C. 1996. An estimate of global ocean circulation and heat fluxes. Nature, 382 (6590): 436–439.CrossRefGoogle Scholar
  22. Marshall J, Schott F. 1999. Open-ocean convection: observations, theory, and models. Rev. Geophys., 37 (1): 1–64.CrossRefGoogle Scholar
  23. McWilliams J C, Sullivan P P, Moeng C H. 1997. Langmuir turbulence in the ocean. J. Fluid Mech., 334: 1–30.CrossRefGoogle Scholar
  24. Mellor G L, Yamada T. 1974. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31 (7): 1 791–1 806.CrossRefGoogle Scholar
  25. Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20 (4): 851–875.CrossRefGoogle Scholar
  26. Mironov D V, Gryanik V M, Moeng C H, Olbers D J, Warncke T H. 2000. Vertical turbulence structure and secondmoment budgets in convection with rotation: a large-eddy simulation study. Quart. J. Roy. Meteor. Soc., 126 (563): 477–515.CrossRefGoogle Scholar
  27. Moeng C H, Sullivan P P. 1994. A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51 (7): 999–1 022.CrossRefGoogle Scholar
  28. Noh Y, Min H S, Raasch S. 2004. Large eddy simulation of the ocean mixed layer: the effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34 (4): 720–735.CrossRefGoogle Scholar
  29. Oka E, Qiu B. 2012. Progress of North Pacific mode water research in the past decade. J. Oceanogr., 68 (1): 5–20.CrossRefGoogle Scholar
  30. Osborn T R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10 (1): 83–89.CrossRefGoogle Scholar
  31. Sabine C L, Feely R A, Gruber N, Key R M, Lee K, Bullister J L, Wanninkhof R, Wong C S, Wallace D W R, Tilbrook B, Millero F J, Peng T H, Kozyr A, Ono T, Rios A F. 2004. The oceanic sink for anthropogenic CO2. Science, 305 (5682): 367–371.CrossRefGoogle Scholar
  32. Shay T J, Gregg M C. 1984. Turbulence in an oceanic convective mixed layer. Nature, 310 (5975): 282–285.CrossRefGoogle Scholar
  33. Siedler G, Church J, Gould J. 2001. Ocean Circulation and Climate: Observing and Modelling the Global Ocean. Academic Press, London. 715p.Google Scholar
  34. Sloyan B M, Rintoul S R. 2001a. Circulation, renewal, and modification of Antarctic Mode and Intermediate Water. J. Phys. Oceanogr., 31 (4): 1 005–1 030.CrossRefGoogle Scholar
  35. Sloyan B M, Rintoul S R. 2001b. The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31 (1): 143–173.CrossRefGoogle Scholar
  36. Steffen E L, D’Asaro E A. 2002. Deep convection in the Labrador Sea as observed by Lagrangian floats. J. Phys. Oceanogr., 32 (2): 475–492.CrossRefGoogle Scholar
  37. Stull R B. 1988. An introduction to boundary layer meteorology. Kluwer, Dordrecht, The Netherlands, p.683.Google Scholar
  38. Terray E A, Donelan M A, Agrawal Y C, Drennan W M, Kahma K K, Williams A J, Hwang P A, Kitaigorodskii S A. 1996. Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26 (5): 792–807.CrossRefGoogle Scholar
  39. Thorpe S A. 2004. Langmuir circulation. Annu. Rev. Fluid Mech., 36: 55–79.CrossRefGoogle Scholar
  40. Thorpe S A. 2005. The Turbulent Ocean. Cambridge University Press, Cambridge.Google Scholar
  41. Wang W, Huang R X. 2004. Wind energy input to the surface waves. J. Phys. Oceanogr., 34 (5): 1 276–1 280.CrossRefGoogle Scholar
  42. Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid. Mech., 36: 281–314.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physical Oceanography Laboratory/CIMSTOcean University of China and Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations