Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 3, pp 990–1001 | Cite as

Comparison of intestinal microbiota and activities of digestive and immune-related enzymes of sea cucumber Apostichopus japonicus in two habitats

  • Qi Wang (王琦)
  • Xiumei Zhang (张秀梅)
  • Muyan Chen (陈慕雁)
  • Wentao Li (李文涛)
  • Peidong Zhang (张沛东)
Article
  • 66 Downloads

Abstract

Sea cucumber Apostichopus japonicus stock enhancement by releasing hatchery-produced seeds is a management tool used to recover its population under natural environmental conditions. To assess the suitability of releasing sites, we examined the microbiota of the gut contents of A. japonicus from two populations (one in sandy-muddy seagrass beds and one in rocky intertidal reefs) and the microbiota in their surrounding sediments. The activities of digestive and immune-related enzymes in the A. japonicus were also examined. The results indicated that higher bacterial richness and Shannon diversity index were observed in all the seagrass-bed samples. There were significant differences in intestinal and sediment microorganisms between the two habitats, with a 2.87 times higher abundance of Firmicutes in the seagrass bed sediments than that in the reefs. Meanwhile, Bacteroidetes and Actinobacteria were significantly higher abundant in the gut content of A. japonicus from seagrass bed than those from the reefs. In addition, the seagrass-bed samples exhibited a relatively higher abundance of potential probiotics. Principal coordinates analysis and heatmap showed the bacterial communities were classified into two groups corresponding to the two habitat types. Moreover, compared to A. japonicus obtained from rocky intertidal habitat, those obtained from the seagrass bed showed higher lysozyme, superoxide dismutase and protease activities. Our results suggest that bacterial communities present in seagrass beds might enhance the digestive function and immunity of A. japonicus. Therefore, compared with the rocky intertidal reef, seagrass bed seems to be more beneficial for the survival of A. japonicus.

Keyword

Apostichopus japonicus gut content microflora seagrass bed rocky intertidal habitat high throughput sequencing enzyme activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balcázar J L, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Múzquiz J L. 2006. The role of probiotics in aquaculture. Vet. Microbiol., 114 (3–4): 173–186.CrossRefGoogle Scholar
  2. Belcher P R, Consultant. 1997. Measurement of myocardial contractility. J. Cardiothor ac. Vasc. Anesth., 11 (6): 812.CrossRefGoogle Scholar
  3. Bérdy J. 2005. Bioactive microbial metabolites: a personal view. J. Antibiot., 58 (1): 1–26.CrossRefGoogle Scholar
  4. Bordbar S, Anwar F, Saari N. 2011. High-value components and bioactives from sea cucumbers for functional foods—a review. Mar. Drugs, 9 (10): 1 761–1 805.CrossRefGoogle Scholar
  5. Bull A T, Stach J E M. 2007. Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol., 15 (11): 491–499.CrossRefGoogle Scholar
  6. Caporaso J G, Kuczynski J, Stombaugh J et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods, 7 (5): 335–336.CrossRefGoogle Scholar
  7. Chao A. 1984. Nonparametric estimation of the number of classes in a population. Scand. J. Stat., 11 (4): 265–270.Google Scholar
  8. Cottrell M T, Kirchman D L. 2000. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecularweight dissolved organic matter. Appl. Environ. Microbiol., 66 (4): 1 692–1 697.CrossRefGoogle Scholar
  9. Dou Y, Zhao X W, Ding J, He P. 2016. Application of highthroughput sequencing for analyzing bacterial communities in earthen ponds of sea cucumber aquaculture in northern China. Oceanol. Limnol. Sin., 47 (1): 122–129. (in Chinese with English abstract)Google Scholar
  10. Dröge S, Limper U, Emtiazi F, Schönig I, Pavlus N, Drzyzga O, Fischer U, König H. 2005. In vitro and in vivo sulfate reduction in the gut contents of the termite Mastotermes darwiniensis and the rose-chafer Pachnoda marginata. J. Gen. Appl. Microbiol., 51 (2): 57–64.CrossRefGoogle Scholar
  11. Eliseikina M G, Magarlamov T Y. 2002. Coelomocyte Morphology in the Holothurians Apostichopus japonicus (Aspidochirota: Stichopodidae) and Cucumaria japonica (Dendrochirota: Cucumariidae). Russian Journal of Marine Biology, 28 (3): 197–202.CrossRefGoogle Scholar
  12. Fan Y, Li L, Yu X Q, Liu E F, Li T B, Xu L, Ye H B. 2015. Effect of Codonopsis pilosula as an immunopotentiator on intestinal bacterial community composition of Apostichopus japonicus. Chin. J. Anim. Nutrition, 27 (2): 638–646. (in Chinese with English abstract)Google Scholar
  13. Gao F, Li F H, Tan J, Yan J P, Sun H L. 2014a. Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing. PLoS One, 9 (6): e100092, https://doi.org/10.1371/journal.pone.0100092.CrossRefGoogle Scholar
  14. Gao F, Sun H L, Xu Q, Tan J, Yan J P, Wang Q Y. 2010. PCRDGGE analysis of bacterial community composition in the gut contents of Apostichopus japonicus. J. Fish. Sci. China, 17 (4): 671–680. (in Chinese with English abstract)Google Scholar
  15. Gao M L, Zhang G L, Hou H M. 2014b. Bacterial diversity in the intestine of Apostichopus japonicus in Dalian Bay. J. Dalian Polytech. Univ., 33 (2): 84–89. (in Chinese with English abstract)Google Scholar
  16. Good I J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika, 40 (3–4): 237–264.CrossRefGoogle Scholar
  17. Hassett R P, Landry M R. 1990. Seasonal changes in feeding rate, digestive enzyme activity, and assimilation efficiency of Calanus pacificus. Mar. Ecol. Prog. Ser., 62: 62–203.CrossRefGoogle Scholar
  18. Jeon Y S, Park S C, Lim J, Chun J, Kim B S. 2015. Improved pipeline for reducing erroneous identification by 16S rRNA sequences using the Illumina MiSeq platform. J. Microbiol., 53 (1): 60–69.CrossRefGoogle Scholar
  19. Johnson P T. 1969. The coelomic elements of sea urchins (Strongylocentrotus) III. In vitro reaction to bacteria. J. Invertebr. Pathol., 13 (1): 42–54.Google Scholar
  20. Jørgensen B B. 1982. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature, 296 (5858): 643–645.CrossRefGoogle Scholar
  21. Jurasinski G, Retzer V, Beierkuhnlein C. 2009. Inventory, differentiation, and proportional diversity: a consistent terminology for quantifying species diversity. Oecologia, 159 (1): 15–26.CrossRefGoogle Scholar
  22. Li Q F, Zhang Y, Juck D, Fortin N, Greer C W, Tang Q S. 2010. Phylogenetic analysis of bacterial communities in the shrimp and sea cucumber aquaculture environment in northern China by culturing and PCR-DGGE. Aquacult. Int., 18 (6): 977–990.CrossRefGoogle Scholar
  23. Liu X J, Zhou Y, Yang H S, Ru S G. 2013. Eelgrass detritus as a food source for the sea cucumber Apostichopus japonicus selenka (echinidermata: holothuroidea) in coastal waters of North China: an experimental study in flow-through systems. PLoS One, 8 (3): e58293, https://doi.org/10.1371/journal.pone.0058293.CrossRefGoogle Scholar
  24. Moriarty D J W. 1982. Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organic carbon and organic nitrogen in sediments of the Great Barrier Reef. Mar. Freshw. Res., 33 (2): 255–263.CrossRefGoogle Scholar
  25. Muyzer G, de Waal E C, Uitterlinden A G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA. Appl. Environ. Microbiol., 59 (3): 695–700.Google Scholar
  26. O'Hara A M, Shanahan F. 2006. The gut flora as a forgotten organ. EMBO Reports, 7 (7): 688–693.CrossRefGoogle Scholar
  27. Pan K C, Yang H B. 1997. Progress in study of mechanism of Bacillus. Feed Ind., 18 (9): 32–34.Google Scholar
  28. Peiffer J A, Spor A, Koren O, Jin Z, Tringe S G, Dangl J L, Buckler E S, Ley R E. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. USA., 110 (16): 6 548–6 553.CrossRefGoogle Scholar
  29. Purcell S W, Hair C A, Mills D J. 2012. Sea cucumber culture, farming and sea ranching in the tropics: progress, problems and opportunities. Aquaculture, 368-369: 68–81.CrossRefGoogle Scholar
  30. Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasaveta P. 2000. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture, 191 (4): 271–288.CrossRefGoogle Scholar
  31. Reyes-Bonilla H, Herrero-Pérezrul M D. 2003. Population parameters of an exploited population of Isostichopus fuscus (Holothuroidea) in the southern Gulf of California, México. Fisheries Research, 59 (3): 423–430.CrossRefGoogle Scholar
  32. Rosselló-Mora R, Amann R. 2001. The species concept for prokaryotes. FEMS Microbiol. Rev., 25 (1): 39–67.CrossRefGoogle Scholar
  33. Sögaard D H, Suhr-Jessen T. 1990. Microbials for feed beyond lactic acid bacteria. Feed Int., 11: 11–32.Google Scholar
  34. Sun Y, Chen D. 1989. The microbial composition of Stichopus japonicus and its physiological property. Oceanol. Limnol. Sin., 20 (4): 300–307. (in Chinese with English abstract)Google Scholar
  35. Uthicke S. 2004. Over fishing of holothurians: lessons from the Great Barrier Reef. In: Lovatelli A, Conand C, Purcell S, Uthicke S, Hamel J F, Mercier A eds. Advances in Sea Cucumber Aquaculture and Management. Fao Report No. 463. FAO, Rome, p.163-171.Google Scholar
  36. Vaz-Moreira I, Egas C, Nunes O C, Manaia C M. 2011. Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample. Antonie van Leeuwenhoek, 100 (2): 245–257.CrossRefGoogle Scholar
  37. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev., 64 (4): 655–671.CrossRefGoogle Scholar
  38. Wang J H, Zhao L Q, Liu J F, Wang H, Xiao S. 2015. Effect of potential probiotic Rhodotorula benthica D30 on the growth performance, digestive enzyme activity and immunity in juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immun ol., 43 (2): 330–336.CrossRefGoogle Scholar
  39. Wang Y B, Li J R, Lin J. 2008. Probiotics in aquaculture: challenges and outlook. Aquaculture, 281 (1–4): 1–4.Google Scholar
  40. Wu S G, Tian J Y, Gatesoupe F J, Li W X, Zou H, Yang B J, Wang T G. 2013. Intestinal microbiota of gibel carp (Carassius auratus gibelio) and its origin as revealed by 454 pyrosequencing. World J. Microb iol. Biotechnol., 29 (9): 1 585–1 595.CrossRefGoogle Scholar
  41. Yuan C Y, Zhang H, Wu Y, Zhang L Y, Sun Y J. 2006. Effects of microecological preparation on growth and activities of digestive enzymes of sea cucumber Apostichopus japonicus. Fish. Sci., 25 (12): 612–615. (in Chinese with English abstract)Google Scholar
  42. Zhang L B, Yang H S, Xu Q et al. 2011a. A new system for the culture and stock enhancement of sea cucumber, Apostichopus japonicus (Selenka), in cofferdams. Aquac. Res., 42 (10): 1 431–1 439.CrossRefGoogle Scholar
  43. Zhang P D, Sun Y, Niu S N, Zhang X M. 2011b. Research progress in seegrass seed dormancy, germination, and seedling growth and related affecting factors. Chin. J. Appl. Ecol., 22 (11): 3 060–3 066. (in Chinese with English abstract)Google Scholar
  44. Zhang W J, Hou H M, Zhang G L, Li Q Y, Du C M. 2011c. Study on diversity of intestine cultivable microorganisms from Apostichopus japonicus. Sci. Technol. Food Ind., 32 (9): 149–151, 155. (in Chinese with English abstract)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qi Wang (王琦)
    • 1
  • Xiumei Zhang (张秀梅)
    • 1
    • 2
  • Muyan Chen (陈慕雁)
    • 1
  • Wentao Li (李文涛)
    • 1
  • Peidong Zhang (张沛东)
    • 1
  1. 1.Key Laboratory of Mariculture, Ministry of EducationOcean University of ChinaQingdaoChina
  2. 2.Laboratory for Marine Fisheries and AquacultureQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations