Diagnostic description and geographic distribution of four new cryptic species of the blue-spotted maskray species complex (Myliobatoidei: Dasyatidae; Neotrygon spp.) based on DNA sequences

  • Philippe Borsa
  • Irma S. Arlyza
  • Thierry B. Hoareau
  • Kang-Ning Shen
Article

Abstract

Nine morphologically similar but genetically distinct lineages in the blue-spotted maskray species complex, previously Neotrygon kuhlii (Müller and Henle) qualify as cryptic species. Four of these lineages have been previously described as Neotrygon australiae Last, White and Séret, Neotrygon caeruleopunctata Last, White and Séret, Neotrygon orientale Last, White and Séret, and Neotrygon varidens (Garman), but the morphological characters used in the descriptions offered poor diagnoses and their geographic distributions were not delineated precisely. The objective of the present work is to complete the description of the cryptic species in the complex. Here, an additional four lineages are described as new species on the basis of their mitochondrial DNA sequences: Neotrygon bobwardi, whose distribution extends from the northern tip of Aceh to the western coast of Sumatera; Neotrygon malaccensis, sampled from the eastern part of the Andaman Sea and from the Malacca Strait; Neotrygon moluccensis, from the eastern half of the Banda Sea; and Neotrygon westpapuensis from the central portion of northern West Papua. The geographic distributions of N. australiae, N. coeruleopunctata, N. orientale, and N. varidens are updated. For each species, a diagnosis is provided in the form of a combination of private or partly-private nucleotides at 2–4 nucleotide sites along a 519-base pair fragment of the CO1 gene. We believe that the present taxonomic revision will provide information relevant to the sound management and conservation of cryptic species of the blue-spotted maskray in the Coral Triangle region.

Keywords

molecular taxonomy diagnosis distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

343_2018_7056_MOESM1_ESM.pdf (1.5 mb)
Supplementary Table S1 Variable nucleotide sites from the CO1 sequence dataset used to diagnose blue-spotted maskray species formerly under Neotrygon kuhlii (Müller and Henle 1841). The sequence dataset comprises 314 individual sequences including 182 retrieved from GenBank, 128 from Borsa et al. (2016b), three from the Academia Sinica Institute of Zoology, Taipei, and one from Last et al. (2016). Highlighted blue: nucleotides diagnostic or quasi-diagnostic of one of the 8 blue-spotted maskray lineages assigned to a nominal species following the present revision, namely, N. australiae, N. bobwardi sp. nov., N. caeruleopunctata, N. malaccensis sp. nov., N. moluccensis sp. nov., N. orientale, N. varidens, and N. westpapuensis sp. nov.; highlighted grey: nucleotides that are diagnostic or quasi-diagnostic to two of the species. Nucleotide sites numerotated starting from the origin of the CO1 gene in N. orientale, GenBank accession no. JN184065. The fragment used in this alignment is 519 bp long, spanning nucleotide sites 106–624. Dot: nucleotide identical to first sequence of table (N. australiae: DQ108184); dash: no data. Indian-Ocean maskray is clade I of Borsa et al. (2016b)
343_2018_7056_MOESM2_ESM.pdf (1.1 mb)
Supplementary Table S2 Variable nucleotide sites from the cytochrome b gene sequence dataset used to diagnose blue-spotted maskray species formerly under Neotrygon kuhlii (Müller and Henle 1841). The sequence dataset comprises 159 individual sequences including 5 retrieved from GenBank, and 154 from Borsa et al. (2016b). Highlighted blue: nucleotides diagnostic or quasi-diagnostic of one of the 8 blue-spotted maskray lineages assigned to a nominal species following the present revision, namely, N. australiae, N. bobwardi sp. nov., N. caeruleopunctata, N. malaccensis sp. nov., N. moluccensis sp. nov., N. orientale, N. varidens, and N. westpapuensis sp. nov; highlighted grey: nucleotides that are diagnostic or quasi-diagnostic to two of the species. Nucleotide sites numerotated starting from the origin of the cytochrome b gene in N. orientale, GenBank accession no. JN184065. The fragment used in this alignment is 1127 bp long, spanning nucleotide sites 14–1140 of the gene. Dot: no nuclotide change relative to reference; dash: no data. Indian-Ocean maskray is clade I of Borsa et al. (2016b)

References

  1. Arlyza I S, Shen K N, Durand J D, Borsa P. 2013a. Mitochondrial haplotypes indicate parapatric-like phylogeographic structure in blue-spotted maskray (Neotrygon kuhlii) from the Coral Triangle region. Journal of Heredity, 104(5): 725–733.CrossRefGoogle Scholar
  2. Arlyza I S, Shen K N, Solihin D D, Soedharma D, Berrebi P, Borsa P. 2013b. Species boundaries in the Himantura uarnak species complex (Myliobatiformes: Dasyatidae). Molecular Phylogenetics and Evolution, 66(1): 429–435.CrossRefGoogle Scholar
  3. Aschliman N C, Nishida M, Miya M, Inoue J G, Rosana K M, Naylor G J P. 2012. Body plan convergence in the evolution of skates and rays (Chondrichthyes: Batoidea). Molecular Phylogenetics and Evolution, 63(1): 28–42.CrossRefGoogle Scholar
  4. Baldwin C C, Castillo C I, Weigt L A, Victor B C. 2011. Seven new species within western Atlantic Starksia atlantica, S. lepicoelia, and S. sluiteri (Teleostei, Labrisomidae), with comments on congruence of DNA barcodes and species. ZooKeys, 79(3): 21–72.Google Scholar
  5. Bauchot M L. 1994. Les poissons décrits et figurés dans les manuscrits de Quoy au cours du voyage de l’ Astrobale (1826-1829). Cybium, 18(2 Suppl.1): 3–101.Google Scholar
  6. Bickford D, Lohman D J, Sodhi N S, Ng P K L, Meier R, Winker K, Ingram K K, Das I. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22(3): 148–155.CrossRefGoogle Scholar
  7. Borsa P, Arlyza I S, Chen W J, Durand J D, Meekan M G, Shen K N. 2013a. Resurrection of New Caledonian maskray Neotrygon trigonoides (Myliobatoidei: Dasyatidae) from synonymy with N. kuhlii, based on cytochrome-oxidase I gene sequences and spotting patterns. Comptes Rendus Biologies, 336(4): 221–232.CrossRefGoogle Scholar
  8. Borsa P, Béarez P, Paijo S, Chen W J. 2013b. Gymnocranius superciliosus and Gymnocranius satoi, two new large-eye breams (Sparoidea: Lethrinidae) from the Coral Sea and adjacent regions. Comptes Rendus Biologies, 336(4): 233–240.CrossRefGoogle Scholar
  9. Borsa P, Béarez P. 2016. Notes on the origin of Müller and Henle’s illustration and type material of the blue-spotted maskray Neotrygon kuhlii (Myliobatoidei: Dasyatidae). Cybium, 40: 255–258.Google Scholar
  10. Borsa P, Durand J D, Chen W J, Hubert N, Muths D, Mou-Tham G, Kulbicki M. 2016a. Comparative phylogeography of the western Indian Ocean reef fauna. Acta Oecologica, 72: 72–86.CrossRefGoogle Scholar
  11. Borsa P, Durand J D, Shen K N, Arlyza I S, Solihin D D, Berrebi P. 2013c. Himantura tutul sp. nov. (Myliobatoidei: Dasyatidae), a new ocellated whipray from the tropical Indo-West Pacific, described from its cytochrome-oxidase I gene sequence. Comptes Rendus Biologies, 336(2): 82–92.CrossRefGoogle Scholar
  12. Borsa P, Fauvelot C, Tiavouane J, Grulois D, Wabnitz C, Abdon Naguit M R, Andréfouët S. 2015. Distribution of Noah’s giant clam, Tridacna noae. Marine Biodiversity, 45(2): 339–344.CrossRefGoogle Scholar
  13. Borsa P, Sembiring A, Fauvelot C, Chen W J. 2014. Resurrection of Indian Ocean humbug damselfish, Dascyllus abudafur (Forsskål) from synonymy with its Pacific Ocean sibling, Dascyllus aruanus (L.). Comptes Rendus Biologies, 337(12): 709–716.CrossRefGoogle Scholar
  14. Borsa P, Shen K N, Arlyza I S, Hoareau T B. 2016b. Multiple cryptic species in the blue-spotted maskray (Myliobatoidei: Dasyatidae: Neotrygon spp.): an update. Comptes Rendus Biologies, 339(9-10): 417–426.CrossRefGoogle Scholar
  15. Borsa P. 2017. Comment on ‘Annotated checklist of the living sharks, batoids and chimaeras(Chondrichthyes) of the world, with a focus on biogeographical diversity by Weigmann (2016)’. Journal of Fish Biology, 90(4): 1170–1175, http://dx.doi.org/10.1111/jfb.13235.CrossRefGoogle Scholar
  16. Brower A V Z. 2010. Alleviating the taxonomic impediment of DNA barcoding and setting a bad precedent: names for ten species of ‘Astraptes fulgerator’ (Lepidoptera: Hesperiidae: Eudaminae) with DNA-based diagnoses. Systematics and Biodiversity, 8(4): 485–491.CrossRefGoogle Scholar
  17. Bull C M. 1991. Ecology of parapatric distributions. Annual Review of Ecology and Systematics, 22: 19–36.CrossRefGoogle Scholar
  18. Cerutti-Pereyra F, Meekan M G, Wei N W V, O’Shea O, Bradshaw C J A, Austin C M. 2012. Identification of rays through DNA barcoding: an application for ecologists. PLoS One, 7(6): e36479.CrossRefGoogle Scholar
  19. Chen X, Xiang D, Yu J Q, Ding W Y, Zhang S L. 2014. Complete mitochondrial genome of the blue-spotted stingray Neotrygon kuhlii (Myliobatiformes: Dasyatidae). Mitochondrial DNA, 25(6): 429–430.CrossRefGoogle Scholar
  20. Cook L G, Edwards R D, Crisp M D, Hardy N B. 2010. Need morphology always be required for new species descriptions? Invertebrate Systematics, 24(3): 322–326.CrossRefGoogle Scholar
  21. Craig M T, Hastings P A. 2007. A molecular phylogeny of the groupers of the subfamily Epinephelinae (Serranidae) with a revised classification of the Epinephelini. Ichthyological Research, 54(1): 1–17.CrossRefGoogle Scholar
  22. de Castelnau F. 1873. Contribution to the ichthyology of Australia. No. III. Supplement to the fishes of Victoria. Proceedings of the Zoological and Acclimatisation Society of Victoria, 2: 37–158.Google Scholar
  23. Dumont d’Urville J. 1833. Atlas hydrographique du voyage de découvertes exécuté sur la corvette l’Astrolabe. J Tastu, Paris, 25 p.Google Scholar
  24. Durand J D, Borsa P. 2015. Mitochondrial phylogeny of grey mullets(Acanthopterygii: Mugilidae) suggests high proportion of cryptic species. Comptes Rendus Biologies, 338(4): 266–277.CrossRefGoogle Scholar
  25. Durand J D, Chen W J, Shen K N, Fu C, Borsa P. 2012. Genuslevel taxonomic changes implied by the mitochondrial phylogeny of grey mullets (Teleostei: Mugilidae). Comptes Rendus Biologies, 335(10-11): 687–697.CrossRefGoogle Scholar
  26. Fahmi W W T, Jacobsen I P. 2015. Neotrygon kuhlii. The IUCN Red List of Threatened Species. e.T161590A68636167.Google Scholar
  27. Garman S. 1885. Notes and descriptions taken from selachians in the U.S. National Museum. Proceedings of the United States National Museum, 8(482): 39–44.CrossRefGoogle Scholar
  28. International Commission on Zoological Nomenclature. 1999. International code of zoological nomenclature. 4 th edn. The International Trust for Zoological Nomenclature, London, 306p.Google Scholar
  29. International Commission on Zoological Nomenclature. 2012. Amendment of Articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. Zookeys, (219): 1-10.Google Scholar
  30. Jordan D S. 1888. A Manual of the Vertebrate Animals of the Northern United States, Including the District North and East of the Ozark Mountains, South of the Laurentian Hills, North of the Southern Boundary of Virginia, and East of the Missouri River, Inclusive of Marine Species. 5th edn. A.C. McClurg and Company, Chicago, 375p.Google Scholar
  31. Jörger K M, Schrödl M. 2013. How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology, 10: 59.CrossRefGoogle Scholar
  32. Knowlton N. 1993. Sibling species in the sea. Annual Review of Ecology and Systematics, 24: 189–216.CrossRefGoogle Scholar
  33. Krishnamurthy P K, Francis R A. 2012. A critical review on the utility of DNA barcoding in biodiversity conservation. Biodiversity and Conservation, 21(8): 1901–1919.CrossRefGoogle Scholar
  34. Last P R, White W T, Caira J N, Dharmadi, Fahmi, Jensen K, Lim A P K, Manjaji-Matsumoto B M, Naylor G J P, Pogonoski J J, Stevens J D, Yearsley G K. 2010. Sharks and Rays of Borneo. CSIRO, Collingwood (Victoria), 304p.Google Scholar
  35. Last P R, White W T, Séret B. 2016. Taxonomic status of maskrays of the Neotrygon kuhlii species complex (Myliobatoidei: Dasyatidae) with the description of three new species from the Indo-West Pacific. Zootaxa, 4083(4): 533–561.CrossRefGoogle Scholar
  36. Lim K C, Lim P E, Chong V C, Loh K H. 2015. Molecular and morphological analyses reveal phylogenetic relationships of stingrays focusing on the family Dasyatidae (Myliobatiformes). PLoS One, 10(5): e0120518.CrossRefGoogle Scholar
  37. Manwell C, Baker C M A. 1963. A sibling species of sea cucumber discovered by starch gel electrophoresis. Comparative Biochemistry and Physiology, 10(1): 39–53.CrossRefGoogle Scholar
  38. McDonald J H, Koehn R K. 1988. The mussels Mytilus galloprovincialis and M. trossulus on the Pacific coast of North America. Marine Biology, 99(1): 111–118.Google Scholar
  39. Müller J, Henle F G J. 1841. Systematische Beschreibung der Plagiostomen, Mit Sechzig Steindrucktafeln. Veit und Comp, Berlin, xxii+200p..Google Scholar
  40. Naylor G J P, Caira J N, Jensen K, Rosana K A M, White W T, Last P R. 2012. A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bulletin of the American Museum of Natural History, 367: 1–262.CrossRefGoogle Scholar
  41. Nygren A. 2014. Cryptic polychaete diversity: a review. Zoologica Scripta, 43(2): 172–183.CrossRefGoogle Scholar
  42. Pante E, Schoelinck C, Puillandre N. 2015. From integrative taxonomy to species description: one step beyond. Systematic Biology, 64(1): 152–160.CrossRefGoogle Scholar
  43. Pons J, Barraclough T G, Gomez-Zurita J, Cardoso A, Duran D P, Hazell S, Kamoun S, Sumlin W D, Vogler A P. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55(4): 595–609.CrossRefGoogle Scholar
  44. Puckridge M, Last P R, White W T, Andreakis N. 2013. Phylogeography of the Indo-West Pacific maskrays(Dasyatidae, Neotrygon): a complex example of chondrichthyan radiation in the Cenozoic. Ecology and Evolution, 3(2): 217–232.CrossRefGoogle Scholar
  45. Quoy J R C, Gaimard J P. 1835. Voyage de découvertes de l’Astrolabe exécuté par ordre du Roi, pendant les années 1826-1827-1828-1829, sor le commandement de M. J. Dumont d’Urville. Zoologie, Mollusques, Tastu, Paris, 1 344p.Google Scholar
  46. Randall J E, Victor B C. 2015. Descriptions of thirty-four new species of the fish genus Pempheris(Perciformes: Pempheridae), with a key to the species of the western Indian Ocean. Journal of the Ocean Science Foundation, 18: 1–77.Google Scholar
  47. Ratnasingham S, Hebert P D N. 2007. BOLD: the Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Resources, 7(3): 355–364.CrossRefGoogle Scholar
  48. Ratnasingham S, Hebert P D N. 2013. A DNA-based registry for all animal species: the barcode index number(BIN) system. PLoS One, 8(7): e66213.CrossRefGoogle Scholar
  49. Saltford J. 2003. The United Nations and the Indonesian takeover of West Papua, 1962-1969. Routledge, London, 256p.CrossRefGoogle Scholar
  50. Shen K N, Chang C W, Delrieu-Trottin E, Borsa P. 2017. Lemonpeel (Centropyge flavissima) and yellow (C. heraldi) pygmy angelfishes each consist of two geographically isolated sibling species. Marine Biodiversity, http://dx.doi.org/10.1007/s12526-016-0509-y.Google Scholar
  51. Shen K N, Chang C W, Tsai S Y, Wu S C, Lin Z H, Chan Y F, Chen C H, Hsiao C D, Borsa P. 2016. Next generation sequencing yields complete mitogenomes of leopard whipray (Himantura leoparda) and blue-spotted stingray (Neotrygon kuhlii)(Chondrichthyes: Dasyatidae). Mitochondrial DNA Part A, 27(4): 2613–2614.CrossRefGoogle Scholar
  52. Steinke D, deWaard J R, Gomon M F, Johnson J W, Larson H K, Lucanus O, Moore G I, Reader S, Ward R D. 2017. DNA barcoding the fishes of Lizard Island (Great Barrier Reef). Biodiversity Data Journal, 5: e12409.CrossRefGoogle Scholar
  53. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12): 2725–2729.CrossRefGoogle Scholar
  54. Tamura K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution, 9(4): 678–687.Google Scholar
  55. Tautz D, Arctander P, Minelli A, Thomas R H, Vogler A P. 2003. A plea for DNA taxonomy. Trends in Ecology & Evolution, 18(2): 70–74.CrossRefGoogle Scholar
  56. Van Campenhout J, Derycke S, Moens T, Vanreusel A. 2014. Differences in life-histories refute ecological equivalence of cryptic species and provide clues to the origin of bathyal Halomonhystera (Nematoda). PLoS One, 9(11): e111889.CrossRefGoogle Scholar
  57. Vogler A P, Monaghan M T. 2006. Recent advances in DNA taxonomy: fortschritte in der DNA-taxonomie. Journal of Zoological Systematics and Evolutionary Research, 45(1): 1–10.CrossRefGoogle Scholar
  58. Wang Z D, Guo Y S, Liu X M, Fan Y B, Liu C W. 2012. DNA barcoding South China Sea fishes. Mitochondrial DNA, 23(5): 405–410.CrossRefGoogle Scholar
  59. Ward R D, Hanner R, Hebert P D N. 2009. The campaign to DNA barcode all fishes, FISH-BOL. Journal of Fish Biology, 74(2): 329–356.CrossRefGoogle Scholar
  60. Ward R D, Holmes B H, White W T, Last P R. 2008. DNA barcoding Australasian chondrichthyans: results and potential uses in conservation. Marine and Freshwater Research, 59(1): 57–71.CrossRefGoogle Scholar
  61. White W T, Last P R. 2012. A review of the taxonomy of chondrichthyan fishes: a modern perspective. Journal of Fish Biology, 80(5): 901–917.CrossRefGoogle Scholar
  62. Woodland D J, Anderson R C. 2014. Description of a new species of rabbitfish(Perciformes: Siganidae) from southern India, Sri Lanka and the Maldives. Zootaxa, 3811(1): 129–136.CrossRefGoogle Scholar
  63. Yagishita N, Furumitsu K, Yamaguchi A. 2009. Molecular evidence for the taxonomic status of an unde-scribed species of Dasyatis(Chondrichthyes: Dasyatidae) from Japan. Species Diversity, 14(3): 157–164.Google Scholar
  64. Zemlak T S, Ward R D, Connell A D, Holmes B H, Hebert P D N. 2009. DNA barcoding reveals overlooked marine fishes. Molecular Ecology Resources, 9(S1): 237–242.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Philippe Borsa
    • 1
  • Irma S. Arlyza
    • 2
  • Thierry B. Hoareau
    • 3
  • Kang-Ning Shen
    • 4
  1. 1.Institut de Recherche pour le Développement (IRD)UMR 250 “Ecologie Marine Tropicale des Océans Pacifique et Indien”NouméaNew Caledonia
  2. 2.Lembaga Ilmu Pengetahuan Indonesia (LIPI)Pusat Penelitian Oseanografi(P2O)JakartaIndonesia
  3. 3.Molecular Ecology and Evolution Programme, Department of GeneticsUniversity of PretoriaPretoriaSouth Africa
  4. 4.Aquatic Technology LaboratoriesAgricultural Technology Research InstituteTaiwanChina

Personalised recommendations