Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 3, pp 870–881 | Cite as

Divergence time, historical biogeography and evolutionary rate estimation of the order Bangiales (Rhodophyta) inferred from multilocus data

  • Kuipeng Xu (徐奎鹏)
  • Xianghai Tang (唐祥海)
  • Lu Wang (王璐)
  • Xinzi Yu (于欣孜)
  • Peipei Sun (孙佩佩)
  • Yunxiang Mao (茅云翔)
Article
  • 49 Downloads

Abstract

Bangiales is the only order of the Bangiophyceae and has been suggested to be monophyletic. This order contains approximately 190 species and is distributed worldwide. Previous molecular studies have produced robust phylogenies among the red algae, but the divergence times, historical biogeography and evolutionary rates of Bangiales have rarely been studied. Phylogenetic relationships within the Bangiales were examined using the concatenated gene sets from all available organellar genomes. This analysis has revealed the topology (((Bangia, Porphyra) Pyropia) Wildemania). Molecular dating indicates that Bangiales diversified approximately 246.40 million years ago (95% highest posterior density (HPD)=194.78–318.24 Ma, posterior probability (PP)=0.99) in the Late Permian and Early Triassic, and that the ancestral species most likely originated from eastern Gondwanaland (currently New Zealand and Australia) and subsequently began to spread and evolve worldwide. Based on pairwise comparisons, we found a slower rate of nucleotide substitutions and lower rates of diversification in Bangiales relative to Florideophyceae. Compared with Viridiplantae (green algae and land plants), the evolutionary rates of Bangiales and other Rhodophyte groups were found to be dramatically faster, by more than 3-fold for plastid genome (ptDNA) and 15-fold for mitochondrial genome (mtDNA). In addition, an average 2.5-fold lower dN/dS was found for the algae than for the land plants, which indicates purifying selection of the algae.

Keyword

Bangiales phylogenetics divergence time historical biogeography evolutionary rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

343_2018_7054_MOESM1_ESM.pdf (466 kb)
Supplementary material, approximately 466 KB.

References

  1. Abascal F, Zardoya R, Posada D. 2005. ProtTest: selection of best-fit models of protein evolution. Bioinformatics, 21 (9): 2 104–2 105.CrossRefGoogle Scholar
  2. Barraclough T G, Savolainen V. 2001. Evolutionary rates and species diversity in flowering plants. Evolution, 55 (4): 677–683.CrossRefGoogle Scholar
  3. Bell C D, Soltis D E, Soltis P S. 2010. The age and diversification of the angiosperms re-revisited. American Journal of B otany, 97 (8): 1 296–1 303.CrossRefGoogle Scholar
  4. Bengtson S, Sallstedt T, Belivanova V, Whitehouse M. 2017. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biology, 15 (3): e2000735.CrossRefGoogle Scholar
  5. Berger B A, Kriebel R, Spalink D, Sytsma K J. 2016. Divergence times, historical biogeography, and shifts in speciation rates of Myrtales. Molecular Phylogenetics and Evolution, 95: 95–116.CrossRefGoogle Scholar
  6. Blouin N A, Brodie J A, Grossman A C, Xu P, Brawley S H. 2011. Porphyra: a marine crop shaped by stress. Trends in P lant Science, 16 (1): 29–37.CrossRefGoogle Scholar
  7. Broom J E S, Farr T J, Nelson W A. 2004. Phylogeny of the Bangia flora of New Zealand suggests a southern origin for Porphyra and Bangia (Bangiales, Rhodophyta). Molecular Phylogenetics and Evolution, 31 (3): 1 197–1 207.CrossRefGoogle Scholar
  8. Buschiazzo E, Ritland C, Bohlmann J, Ritland K. 2012. Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evolutionary Biology, 12: 8.CrossRefGoogle Scholar
  9. Butterfield N J. 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26 (3): 386–404.CrossRefGoogle Scholar
  10. Campbell M A, Presting G, Bennett M S, Sherwood A R. 2014. Highly conserved organellar genomes in the Gracilariales as inferred using new data from the Hawaiian invasive alga Gracilaria salicornia (Rhodophyta). Phycologia, 53 (2): 109–116.CrossRefGoogle Scholar
  11. Capella-Gutiérrez S, Silla-Martínez J M, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in largescale phylogenetic analyses. Bioinformatics, 25 (15): 1 972–1 973.CrossRefGoogle Scholar
  12. Casey R. 1964. The cretaceous period. Geological Society, London, Special Publications, 1 (1): 193–202.CrossRefGoogle Scholar
  13. Christenhusz M J M, Byng J W. 2016. The number of known plants species in the world and its annual increase. Phytotaxa, 261 (3): 201–217.CrossRefGoogle Scholar
  14. Chumakov N M, Zharkov M A. 2002. Climate during Permian-Triassic biosphere reorganizations, Article 1: climate of the early Permian. Stratigraphy and Geological Correlation, 10 (6): 586–602.Google Scholar
  15. Contreras-Moreira B, Vinuesa P. 2013. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Applied and E nvironmental M icrobiology, 79 (24): 7 696–7 701.CrossRefGoogle Scholar
  16. Conway E, Mumford Jr T F, Scagel R F. 1975. The genus Porphyra in British Columbia and Washington. Syesis, 8: 8–185.Google Scholar
  17. Davies T J, Savolainen V, Chase M W, Moat J, Barraclough T G. 2004. Environmental energy and evolutionary rates in flowering plants. Proceedings of the Royal Society B: Biological Sciences, 271 (1553): 2 195–2 200.CrossRefGoogle Scholar
  18. Deng J B, Drew B T, Mavrodiev E V, Gitzendanner M A, Soltis P S, Soltis D E. 2015. Phylogeny, divergence times, and historical biogeography of the angiosperm family Saxifragaceae. Molecular Phylogenetics and Evolution, 83: 83–86.CrossRefGoogle Scholar
  19. Drouin G, Daoud H, Xia J N. 2008. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Molecular Phylogenetics and Evolution, 49 (3): 827–831.CrossRefGoogle Scholar
  20. Drummond A J, Suchard M A, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29 (8): 1 969–1 973.CrossRefGoogle Scholar
  21. Dumont H J, Vanfleteren J R, De Jonckheere J F, Weekers P H H. 2005. Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences. Systematic Biology, 54 (3): 347–362.CrossRefGoogle Scholar
  22. Guiry M D, Guiry G M. 2017. AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway, http://www.marinespecies.org/aphia.php?p= sourcedetails&id=37.Google Scholar
  23. Hagopian J C, Reis M, Kitajima J P, Bhattacharya D, de Oliveira M C. 2004. Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of rhodoplasts and their relationship to other plastids. Journal of Molecular Evolution, 59 (4): 464–477.CrossRefGoogle Scholar
  24. Herron M D, Hackett J D, Aylward F O, Michod R E. 2009. Triassic origin and early radiation of multicellular volvocine algae. Proceedings of the National Academy of Sciences of the United States of America, 106 (9): 3 254–3 258.CrossRefGoogle Scholar
  25. Hua J M, Smith D R, Borza T, Lee R W. 2012. Similar relative mutation rates in the three genetic compartments of Mesostigma and Chlamydomonas. Protist, 163 (1): 105–115.CrossRefGoogle Scholar
  26. Huelsenbeck J P, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17 (8): 754–755.CrossRefGoogle Scholar
  27. Hughey J R. 2016. Genomic and phylogenetic analysis of the complete plastid Genome of the California endemic seaweed Wildemania schizophylla (Bangiaceae). Madroño, 63 (1): 34–38.CrossRefGoogle Scholar
  28. Janouškovec J, Liu S L, Martone P T, Carré W, Leblanc C, Collén J, Keeling P J. 2013. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PLoS One, 8 (3): e59001.CrossRefGoogle Scholar
  29. Katoh K, Kuma K I, Toh H, Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic A cids R esearch, 33 (2): 511–518.CrossRefGoogle Scholar
  30. Kim K J, Lee H L. 2004. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA R esearch, 11 (4): 247–261.CrossRefGoogle Scholar
  31. Kimura M. 1984. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.Google Scholar
  32. Lanfear R, Ho S Y W, Love D, Bromham L. 2010. Mutation rate is linked to diversification in birds. Proceedings of the National Academy of Sciences of the United States of America, 107 (47): 20 423–20 428.CrossRefGoogle Scholar
  33. Lee J, Cho C H, Park S I, Choi J W, Song H S, West J A, Bhattacharya D, Yoon H S. 2016. Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BMC Biology, 14: 75.CrossRefGoogle Scholar
  34. Leliaert F, Smith D R, Moreau H, Herron M D, Verbruggen H, Delwiche C F, De Clerck O. 2012. Phylogeny and molecular evolution of the green algae. Critical Reviews in Plant Sciences, 31 (1): 1–46.CrossRefGoogle Scholar
  35. Levin D A, Wilson A C. 1976. Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proceedings of the National Academy of Sciences of the United States of America, 73 (6): 2 086–2 090.CrossRefGoogle Scholar
  36. Lu Y, Ran J H, Guo D M, Yang Z Y, Wang X Q. 2014. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS O ne, 9 (9): e107679.CrossRefGoogle Scholar
  37. Milstein D, Oliveira M C, Martins F M, Matioli S R. 2008. Group I introns and associated homing endonuclease genes reveals a clinal structure for Porphyra spiralis var. amplifolia (Bangiales, Rhodophyta) along the eastern coast of South America. BMC Evolutionary Biology, 8: 308.CrossRefGoogle Scholar
  38. Müller K M, Oliveira M C, Sheath R G, Bhattacharya D. 2001. Ribosomal DNA phylogeny of the Bangiophycidae (Rhodophyta) and the origin of secondary plastids. American Journal of Botany, 88 (8): 1 390–1 400.CrossRefGoogle Scholar
  39. Ogg J G, Agterberg F, Gradstein F. 2004. A geologic time scale 2004. In: Abstracts with Programs-Geological Society of America, 36: 74.Google Scholar
  40. Ohta N, Matsuzaki M, Misumi O, Miyagishima S Y, Nozaki H, Tanaka K, Shin-I T, Kohara Y, Kuroiwa T. 2003. Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA R esearch, 10 (2): 67–77.CrossRefGoogle Scholar
  41. Posada D, Crandall K A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics, 14 (9): 817–818.CrossRefGoogle Scholar
  42. Reith M, Munholland J. 1995. Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Molecular Biology Reporter, 13 (4): 333–335.CrossRefGoogle Scholar
  43. Robba L, Russell S J, Barker G L, Brodie J. 2006. Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). American Journal of B otany, 93 (8): 1 101–1 108.CrossRefGoogle Scholar
  44. Ronquist F, Cannatella D. 1997. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology, 46 (1): 195–203.CrossRefGoogle Scholar
  45. Saunders G W, Hommersand M H. 2004. Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. American Journal of Botany, 91 (10): 1 494–1 507.CrossRefGoogle Scholar
  46. Smith D R, Arrigo K R, Alderkamp A C, Allen A E. 2014. Massive difference in synonymous substitution rates among mitochondrial, plastid, and nuclear genes of Phaeocystis algae. Molecular Phylogenetics and Evolution, 71: 36–40.CrossRefGoogle Scholar
  47. Smith D R, Hua J M, Lee R W, Keeling P J. 2012. Relative rates of evolution among the three genetic compartments of the red alga Porphyra differ from those of green plants and do not correlate with genome architecture. Molecular Phylogenetics and Evolution, 65 (1): 339–344.CrossRefGoogle Scholar
  48. Smith D R. 2015. Mutation rates in plastid genomes: they are lower than you might think. Genome Biology and Evolution, 7 (5): 1 227–1 234.CrossRefGoogle Scholar
  49. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30 (9): 1 312–1 313.CrossRefGoogle Scholar
  50. Stanley S M. 1988. Paleozoic mass extinctions; shared patterns suggest global cooling as a common cause. American Journal of Science, 288 (4): 334–352.CrossRefGoogle Scholar
  51. Sutherland J E, Lindstrom S C, Nelson W A, Brodie J, Lynch M D J, Hwang M S, Choi H G, Miyata M, Kikuchi N, Oliveira M C, Farr T, Neefus C, Mols-Mortensen A, Milstein D, Müller K M. 2011. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). Journal of Phycology, 47 (5): 1 131–1 151.CrossRefGoogle Scholar
  52. Swofford D L. 2003. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4. Sinauer Associates, Sunderland, MA.Google Scholar
  53. Venditti C, Pagel M. 2010. Speciation as an active force in promoting genetic evolution. Trends in Ecology & Evolution, 25 (1): 14–20.CrossRefGoogle Scholar
  54. Verbruggen H, Maggs C A, Saunders G W, Le Gall L, Yoon H S, De Clerck O. 2010. Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life. BMC Evolutionary Biology, 10: 16.CrossRefGoogle Scholar
  55. Wang L, Mao Y X, Kong F N, Li G Y, Ma F, Zhang B L, Sun P P, Bi G Q, Zhang F F, Xue H F, Cao M. 2013. Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis. PLoS One, 8 (5): e65902.CrossRefGoogle Scholar
  56. Webster A J, Payne R J H, Pagel M. 2003. Molecular phylogenies link rates of evolution and speciation. Science, 301 (5632): 478.CrossRefGoogle Scholar
  57. Wolfe K H, Li W H, Sharp P M. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences of the United States of America, 84 (24): 9 054–9 058.CrossRefGoogle Scholar
  58. Xiao S H, Knoll A H, Yuan X L, Pueschel C M. 2004. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. American Journal of Botany, 91 (2): 214–227.CrossRefGoogle Scholar
  59. Xiao S H, Zhang Y, Knoll A H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391 (6667): 553–558.CrossRefGoogle Scholar
  60. Yang E C, Boo S M, Bhattacharya D, Saunders G W, Knoll A H, Fredericq S, Graf L, Yoon H S. 2016. Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Scientific Reports, 6: 21361.CrossRefGoogle Scholar
  61. Yang E C, Kim K M, Kim S Y, Lee J, Boo G H, Lee J H, Nelson W A, Yi G M, Schmidt W E, Fredericq S, Boo S M, Bhattacharya D, Yoon H S. 2015. Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae. Genome Biology and Evolution, 7 (8): 2 394–2 406.CrossRefGoogle Scholar
  62. Yang Z H. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24 (8): 1 586–1 591.CrossRefGoogle Scholar
  63. Yoon H S, Hackett J D, Ciniglia C, Pinto G, Bhattacharya D. 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution, 21 (5): 809–818.CrossRefGoogle Scholar
  64. Yoon H S, Müller K M, Sheath R G, Ott F D, Bhattacharya D. 2006. Defining the major lineages of red algae (Rhodophyta). Journal of P hycology, 42 (2): 482–492.CrossRefGoogle Scholar
  65. Yu Y, Harris A, He X J. 2010. S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution, 56 (2): 848–850.CrossRefGoogle Scholar
  66. Zhao L, Li X, Zhang N, Zhang S D, Yi T S, Ma H, Guo Z H, Li D Z. 2016. Phylogenomic analyses of large-scale nuclear genes provide new insights into the evolutionary relationships within the rosids. Molecular Phylogenetics and Evolution, 105: 166–176.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kuipeng Xu (徐奎鹏)
    • 1
  • Xianghai Tang (唐祥海)
    • 1
  • Lu Wang (王璐)
    • 1
  • Xinzi Yu (于欣孜)
    • 1
  • Peipei Sun (孙佩佩)
    • 1
  • Yunxiang Mao (茅云翔)
    • 1
    • 2
  1. 1.Key Laboratory of Marine Genetics and Breeding (Ocean University of China)Ministry of EducationQingdaoChina
  2. 2.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations