Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 3, pp 738–749 | Cite as

Stocks and dynamics of particulate and dissolved organic matter in a large, shallow eutrophic lake (Taihu, China) with dense cyanobacterial blooms

  • Limei Shi (施丽梅)
  • Yaxin Huang (黄亚新)
  • Yaping Lu (卢亚萍)
  • Feizhou Chen (陈非洲)
  • Min Zhang (张民)
  • Yang Yu (于洋)
  • Fanxiang Kong (孔繁翔)
Article

Abstract

Cyanobacterial blooms occur in eutrophic lakes worldwide, and greatly impair these ecosystems. To explore influences of cyanobacterial blooms on dynamics of both particulate organic matter (POM) and dissolved organic matter (DOM), which are at the base of the food chain, an investigation was conducted from December 2014 to November 2015 that included various stages of the seasonal cyanobacterial blooms (dominated by Microcystis ) in a large-shallow eutrophic Chinese lake (Taihu Lake). Data from eight sites of the lake are compiled into a representative seasonal cycle to assess general patterns of POM and DOM dynamics. Compared to December, 5-fold and 3.5-fold increases were observed in July for particulate organic carbon (POC, 3.05–15.37 mg/L) and dissolved organic carbon (DOC, 5.48–19.25 mg/L), respectively, with chlorophyll a (Chl a ) concentrations varying from 8.2 to 97.7 μg/L. Approximately 40% to 76% of total organic carbon was partitioned into DOC. All C, N, and P in POM and DOC were significantly correlated with Chl a. POC:Chl a ratios were low, whereas proportions of the estimated phytoplankton-derived organic matter in total POM were high during bloom seasons. These results suggested that contributions of cyanobacterial blooms to POM and DOC varied seasonally. Seasonal average C:P ratios in POM and DOM varied from 79 to 187 and 299 to 2 175, respectively. Both peaked in July and then sharply decreased. Redundancy analysis revealed that Chl a explained most of the variations of C:N:P ratios in POM, whereas temperature was the most explanatory factor for DOM. These findings suggest that dense cyanobacterial blooms caused both C-rich POM and DOM, thereby providing clues for understanding their influence on ecosystems.

Keyword

C:N N:P stoichiometry phytoplankton blooms eutrophic lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We thank the anonymous reviewers for their valuable comments in the previous version of this manuscript. We thank Taihu Laboratory for Lake Ecosystem Research (TLLER) for providing the monitoring data of phytoplankton. We appreciate CHEN Chao for his help for sample collection in the field.

References

  1. Arrigo K R, Robinson D H, Worthen D L, Dunbar R B, DiTullio G R, VanWoert M, Lizotte M P. 1999. Phytoplankton community structure and the drawdown of nutrients and CO 2 in the Southern Ocean. Science, 283 (5400): 365–367.CrossRefGoogle Scholar
  2. Arrigo K R. 2005. Marine microorganisms and global nutrient cycles. Nature, 437 (7057): 349–355.CrossRefGoogle Scholar
  3. Berman T, Bronk D A. 2003. Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquat. Microb. Ecol., 31 (3): 279–305.CrossRefGoogle Scholar
  4. Berman T, Pollingher U. 1974. Annual and seasonal variations of phytoplankton, chlorophyll, and photosynthesis in Lake Kinncret. Limnol. Oceanogr., 19 (1): 31–55.CrossRefGoogle Scholar
  5. Bertilsson S, Berglund O, Karl D M, Chisholm S W. 2003. Elemental composition of marine Prochlorococcus and Synechococcus: implications for the ecological stoichiometry of the sea. Limnol. Oceanogr., 48 (5): 1 721–1 731.CrossRefGoogle Scholar
  6. Carlson C A, Hansell D A, Peltzer E T, Smith W O Jr. 2000. Stocks and dynamics of dissolved and particulate organic matter in the southern Ross Sea, Antarctica. Deep Sea Res. Part II Top. Stud. Oceanogr., 47 (15-16): 3 201–3 225.CrossRefGoogle Scholar
  7. Chen Y W, Qin B Q, Teubner K, Dokulil M T. 2003. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Taihu Lake, a large shallow lake in China. J. Plankton Res., 25 (4): 445–453.CrossRefGoogle Scholar
  8. Cifuentes L A, Sharp J H, Fogel M L. 1988. Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary. Limnol. Oceanogr., 33 (5): 1 102–1 115.CrossRefGoogle Scholar
  9. Cross W F, Wallace J B, Rosemond A D. 2007. Nutrient enrichment reduces constraints on material flows in a detritus-based food web. Ecology, 88 (10): 2 563–2 575.CrossRefGoogle Scholar
  10. Davis T W, Harke M J, Marcoval M A, Goleski J, Orano-Dawson C, Berry D L, Gobler C J. 2010. Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquat. Microb. Ecol., 61 (2): 149–162.CrossRefGoogle Scholar
  11. Ebina J, Tsutsui T, Shirai T. 1983. Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Res., 17 (12): 1 721–1 726.CrossRefGoogle Scholar
  12. Elser J J, Chrzanowski T H, Sterner R W, Mills K H. 1998. Stoichiometric constraints on food-web dynamics: a whole-lake experiment on the Canadian Shield. Ecosystems, 1 (1): 120–136.CrossRefGoogle Scholar
  13. Elser J J, Hayakawa K, Urabe J. 2001. Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology, 82 (3): 898–903.CrossRefGoogle Scholar
  14. Elser J J, Sterner R W, Gorokhova E, Fagan W F, Markow T A, Cotner J B, Harrison J F, Hobbie S E, Odell G M, Weider L W. 2000. Biological stoichiometry from genes to ecosystems. Ecol. Lett., 3 (6): 540–550.CrossRefGoogle Scholar
  15. Elser J, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner R W. 2003. Growth rate-stoichiometry couplings in diverse biota. Ecol. Lett., 6 (10): 936–943.CrossRefGoogle Scholar
  16. Fukushima T, Park J C, Imai A, Matsushige K. 1996. Dissolved organic carbon in a eutrophic lake; dynamics, biodegradability and origin. Aquat. Sci., 58 (2): 139–157.CrossRefGoogle Scholar
  17. Geider R, La Roche J. 2002. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol., 37 (1): 1–17.CrossRefGoogle Scholar
  18. Glibert P M, Heil C A, Hollander D, Revilla M, Hoare A, Alexander J, Murasko S. 2004. Evidence for dissolved organic nitrogen and phosphorus uptake during a cyanobacterial bloom in Florida Bay. Mar. Ecol. Prog. Ser., 280: 73–83.CrossRefGoogle Scholar
  19. Hama T, Handa N. 1983. The seasonal variation of organic constituents in a eutrophic lake, Lake Suwa, Japan. Part II. Dissolved organic matter. Arch. Hydrobiol., 98 (4): 443–462.Google Scholar
  20. Hecky R E, Campbell P, Hendzel L L. 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr., 38 (4): 709–724.CrossRefGoogle Scholar
  21. Hecky R E, Kilham P. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol. Oceanogr., 33 (4 Part 2): 796–822.Google Scholar
  22. Hessen D O, Andersen T, Brettum P, Faafeng B A. 2003. Phytoplankton contribution to sestonic mass and elemental ratios in lakes: implications for zooplankton nutrition. Limnol. Oceanogr., 48 (3): 1 289–1 296.CrossRefGoogle Scholar
  23. Hessen D O, Van Donk E, Gulati R. 2005. Seasonal seston stoichiometry: effects on zooplankton in cyanobacteriadominated lakes. J. Plankton Res., 27 (5): 449–460.CrossRefGoogle Scholar
  24. Hillebrand H, Steinert G, Boersma M, Malzahn A, Meunier C L, Plum C, Ptacnik R. 2013. Goldman revisited: fastergrowing phytoplankton has lower N:P and lower stoichiometric flexibility. Limnol. Oceanogr., 58 (6): 2 076–2 088.CrossRefGoogle Scholar
  25. Hopkinson C S Jr, Vallino J J, Nolin A. 2002. Decomposition of dissolved organic matter from the continental margin. Deep Sea Res. Part II Top. Stud. Oceanogr., 49 (20): 4 461–4 478.CrossRefGoogle Scholar
  26. Hopkinson C S, Fry B, Nolin A L. 1997. Stoichiometry of dissolved organic matter dynamics on the continental shelf of the northeastern U.S.A. Cont. Shelf Res., 17 (5): 473–489.CrossRefGoogle Scholar
  27. Huang W J, Lai C H, Cheng Y L. 2007. Evaluation of extracellular products and mutagenicity in cyanobacteria cultures separated from a eutrophic reservoir. Sci. Total Environ., 377 (2–3): 214–223.CrossRefGoogle Scholar
  28. Kim B, Choi K, Kim C, Lee U H, Kim Y H. 2000. Effects of the summer monsoon on the distribution and loading of organic carbon in a deep reservoir, Lake Soyang, Korea. Water Res., 34 (14): 3 495–3 504.CrossRefGoogle Scholar
  29. Kim C, Nishimura Y, Nagata T. 2006. Role of dissolved organic matter in hypolimnetic mineralization of carbon and nitrogen in a large, monomictic lake. Limnol. Oceanogr., 51 (1): 70–78.CrossRefGoogle Scholar
  30. Kim T H, Kim G. 2013. Factors controlling the C:N:P stoichiometry of dissolved organic matter in the N-limited, cyanobacteria-dominated East/Japan Sea. J. Mar. Syst., 115-116: 1–9.CrossRefGoogle Scholar
  31. Klausmeier C A, Litchman E, Daufresne T, Levin S A. 2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature, 429 (6988): 171–174.CrossRefGoogle Scholar
  32. Kong F X, Gao G. 2005. Hypothesis on cyanobacteria bloomforming mechanism in large shallow eutrophic lakes. Acta Ecol. Sin., 25 (3): 589–595.Google Scholar
  33. Lü S G, Wang X C, Han B P. 2009. A field study on the conversion ratio of phytoplankton biomass carbon to chlorophyll-a in Jiaozhou Bay, China. Chin. J. Oceanol. Limnol., 27 (4): 793–805.CrossRefGoogle Scholar
  34. Ma J R, Qin B Q, Paerl H W, Brookes J D, Hall N S, Shi K, Zhou Y Q, Guo J S, Li Z, Xu H, Wu T F, Long S X. 2016. The persistence of cyanobacterial (Microcystis spp.) blooms throughout winter in Taihu Lake, China. Limnol. Oceanogr., 61 (2): 711–722.CrossRefGoogle Scholar
  35. Martiny A C, Pham C T A, Primeau F W, Vrugt J A, Moore J K, Levin S A, Lomas M W. 2013. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci., 6 (4): 279–283.CrossRefGoogle Scholar
  36. McCarthy M J, Lavrentyev P J, Yang L Y, Zhang L, Chen Y W, Qin B Q, Gardner W S. 2007. Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, wellmixed, eutrophic lake (Taihu Lake, China). Hydrobiologia, 581 (1): 195–207.CrossRefGoogle Scholar
  37. Mei Z P, Legendre L, Tremblay J É, Miller L A, Gratton Y, Lovejoy C, Yager P L, Gosselin M. 2005. Carbon to nitrogen (C:N) stoichiometry of the spring–summer phytoplankton bloom in the North Water Polynya (NOW). Deep Sea Res. Part I Oceanogr. Res. Pap., 52 (12): 2 301–2 314.CrossRefGoogle Scholar
  38. Meyers P A. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol., 114 (3–4): 289–302.CrossRefGoogle Scholar
  39. Mitamura O, Seike Y, Kondo K, Goto N, Anbutsu K, Akatsuka T, Kihira M, Tsering T Q, Nishimura T M. 2003. First investigation of ultraoligotrophic alpine Lake Puma Yumco in the pre-Himalayas, China. Limnology, 4 (3): 167–175.CrossRefGoogle Scholar
  40. Nagata T. 2000. Production mechanisms of dissolved organic matter. In: Kirchman D L ed. Microbial Ecology of the Oceans. Wiley-Liss, New York.Google Scholar
  41. Norrman B, Zwelfel U L, Hopkinson C S Jr, Brian F. 1995. Production and utilization of dissolved organic carbon during an experimental diatom bloom. Limnol. Oceanogr., 40 (5): 898–907.CrossRefGoogle Scholar
  42. Parsons T R, Takahashi M, Hargrave B. 1977. Biological Oceanographic Processes. 2 nd edn. Pergamon Press, New York. p.332.Google Scholar
  43. Qin B Q, Li W, Zhu G W, Zhang Y L, Wu T F, Gao G. 2015. Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Taihu Lake (China). J. Hazard. Mater., 287: 287–356.CrossRefGoogle Scholar
  44. Qin B Q, Xu P Z, Wu Q L, Luo L C, Zhang Y L. 2007. Environmental issues of lake Taihu, China. Hydrobiologia, 581 (1): 3–14.CrossRefGoogle Scholar
  45. Roth V N, Dittmar T, Gaupp R, Gleixner G. 2013. Latitude and pH driven trends in the molecular composition of DOM across a north south transect along the Yenisei River. Geochim. Cosmochim. Acta, 123: 123–93.CrossRefGoogle Scholar
  46. Shi X L, Qian S Q, Kong F X, Zhang M, Yu Y. 2011. Differences in growth and alkaline phosphatase activity between Microcystis aeruginosa and Chlorella pyrenoidosa in response to media with different organic phosphorus. J. Limnol., 70 (1): 21–25.CrossRefGoogle Scholar
  47. Søndergaard M, Williams P J L B, Cauwet G, Riemann B, Robinson C, Terzic S, Woodward E M S, Worm J. 2000. Net accumulation and flux of dissolved organic carbon and dissolved organic nitrogen in marine plankton communities. Limnol. Oceanogr., 45 (5): 1 097–1 111.CrossRefGoogle Scholar
  48. Sterner R W, Elser J J. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.Google Scholar
  49. Sterner R W, Hagemeier D D, Smith W L, Smith R F. 1993. Phytoplankton nutrient limitation and food quality for Daphnia. Limnol. Oceanogr., 38 (4): 857–871.CrossRefGoogle Scholar
  50. Thurman E M. 1985. Organic Geochemistry of Natural Waters. Springer, Netherlands.Google Scholar
  51. Wetz M S, Wheeler P A. 2003. Production and partitioning of organic matter during simulated phytoplankton blooms. Limnol. Oceanogr., 48 (5): 1 808–1 817.CrossRefGoogle Scholar
  52. Williams P J L B. 1995. Evidence for the seasonal accumulation of carbon-rich dissolved organic material, its scale in comparison with changes in particulate material and the consequential effect on net C /N assimilation ratios. Mar. Chem., 51 (1): 17–29.CrossRefGoogle Scholar
  53. Ye L L, Wu X D, Liu B, Yan D Z, Kong F X. 2015. Dynamics and sources of dissolved organic carbon during phytoplankton bloom in hypereutrophic Taihu Lake (China). Limnologica, 54: 54–5.CrossRefGoogle Scholar
  54. Yoshimura T, Ogawa H, Imai K, Aramaki T, Nojiri Y, Nishioka J, Tsuda A. 2009. Dynamics and elemental stoichiometry of carbon, nitrogen, and phosphorus in particulate and dissolved organic pools during a phytoplankton bloom induced by in situ iron enrichment in the western subarctic Pacific (SEEDS-II). Deep Sea Res. Part II Top. Stud. Oceanogr., 56 (26): 2 863–2 874.CrossRefGoogle Scholar
  55. Zhang Y L, Gao G, Shi K, Niu C, Zhou Y Q, Qin B Q, Liu X H. 2014. Absorption and fluorescence characteristics of rainwater CDOM and contribution to Taihu Lake, China. Atmos. Environ., 98: 98–483.CrossRefGoogle Scholar
  56. Zhang Y L, van Dijk M A, Liu M L, Zhu G W, Qin B Q. 2009. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence. Water Res., 43 (18): 4 685–4 697.CrossRefGoogle Scholar
  57. Zhang Y L, Yin Y, Liu X H, Shi Z Q, Feng L Q, Liu M L, Zhu G W, Gong Z J, Qin B Q. 2011a. Spatial-seasonal dynamics of chromophoric dissolved organic matter in Taihu Lake, a large eutrophic, shallow lake in China. Org. Geochem., 42 (5): 510–519.CrossRefGoogle Scholar
  58. Zhang Y L, Yin Y, Zhang E L, Zhu G W, Liu M L, Feng L Q, Qin B Q, Liu X H. 2011b. Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China. Photochem. Photobiol. Sci., 10 (4): 469–482.CrossRefGoogle Scholar
  59. Zlotnik I, Dubinsky Z. 1989. The effect of light and temperature on doc excretion by phytoplankton. Limnol. Oceanogr., 34 (5): 831–839.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Limei Shi (施丽梅)
    • 1
  • Yaxin Huang (黄亚新)
    • 2
  • Yaping Lu (卢亚萍)
    • 2
  • Feizhou Chen (陈非洲)
    • 1
  • Min Zhang (张民)
    • 1
  • Yang Yu (于洋)
    • 1
  • Fanxiang Kong (孔繁翔)
    • 1
  1. 1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
  2. 2.Biological Experiment Teaching Center, College of Life SciencesNanjing Agricultural UniversityNanjingChina

Personalised recommendations