Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 3, pp 717–725 | Cite as

Upper trophic structure in the Atlantic Patagonian shelf break as inferred from stable isotope analysis

  • Guoping Zhu (朱国平)
  • Haiting Zhang (张海亭)
  • Yang Yang (杨洋)
  • Shaoqin Wang (王少琴)
  • Lian Wei (魏联)
  • Qingyuan Yang (杨清源)
Article
  • 35 Downloads

Abstract

The Patagonian Shelf is a very productive region with different ecosystem structures. A long history of fishing in the Southwestern Atlantic Ocean combined with a complex hydrographic structure, with a permanent front over the shelf-break and different coastal frontal regions, and a wide non-frontal area in between have made the food web in this area more complex and have resulted in changes to the spatialtemporal scale. Stable isotopes of carbon and nitrogen were used to determine the trophic structure of the Patagonian shelf break which was previously poorly understood. The results indicated that the average δ15N value of pelagic guild (Illex argentinus) was remarkable lower than those of the other guilds. The δ13C values of almost all species ranged from -17‰ to -18‰, but Stromateus brasiliensis had a significant lower δ13C value. Compared with the southern Patagonian shelf, short food chain length also occurred. The impact of complex oceanographic structures has resulted in food web structure change to the temporal-spatial scale on the Patagonian shelf. The Patagonian shelf break can be considered as a separated ecosystem structure with lower δ13C values.

Keyword

1315trophic structure Patagonian shelf break 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank the fisheries observers, crew and the officers of the trawler Longfa, LIU Zijun, CHEN Lvfen, WANG Rui, SONG Qi and REN Zeqian at the College of Marine Sciences, Shanghai Ocean University for their helps in processing the samples. We acknowledge Mr Alan Coughtrey of the Shanghai Ocean University for his help in polishing the language. Finally, we would also like to thank two anonymous reviewers for their contributions to improve this manuscript.

References

  1. Acha E M, Mianzan H W, Guerrero R A, Favero M, Bava J. 2004. Marine fronts at the continental shelves of austral South America: physical and ecological processes. J. Mar. Syst., 44 (1–2): 83–105.CrossRefGoogle Scholar
  2. Agersted M D, Bode A, Nielsen T G. Trophic position of coexisting krill species: A stable isotope approach. Mar. Ecol. Progr. Ser., 516:139-151.Google Scholar
  3. Alemany D, Acha E M, Iribarne O O. 2014. Marine fronts are important fishing areas for demersal species at the Argentine Sea (Southwest Atlantic Ocean). J. Sea Res., 87: 56–67.CrossRefGoogle Scholar
  4. Arkhipkin A, Brickle P, Laptikhovsky V. 2013. Links between marine fauna and oceanic fronts on the Patagonian Shelf and Slope. Arquipelago-Life Mar. Sci., 30: 19–37.Google Scholar
  5. Bligh E G, Dyer W J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37 (8): 911–917.CrossRefGoogle Scholar
  6. Boltovskoy D. 2000. South Atlantic Zooplankton. Backhuys Publishers, Leiden. 1706p.Google Scholar
  7. Botto F, Gaitán E, Mianzan H, Acha M, Giberto D, Schiarit A, Iribarne O. 2011. Origin of resources and trophic pathways in a large SW Atlantic estuary: an evaluation using stable isotopes. Estuar. Coast. Shelf Sci., 92 (1): 70–77.CrossRefGoogle Scholar
  8. Calvert S E, Nielsen B, Fontugne M R. 1992. Evidence from nitrogen isotope ratios for enhanced productivity during formation of eastern Mediterranean sapropels. Nature, 359 (6392): 223–225.CrossRefGoogle Scholar
  9. Chen X J, Liu B L, Chen Y. 2008. A review of the development of Chinese distant-water squid jigging fisheries. Fish. Res., 89 (3): 211–221.CrossRefGoogle Scholar
  10. Ciancio J E, Pascual M A, Botto F, Frere E, Iribarne O. 2008. Trophic relationships of exotic anadromous salmonids in the southern Patagonian Shelf as inferred from stable isotopes. Limnol. Oceanogr., 53 (2): 788–798.CrossRefGoogle Scholar
  11. Clarke K R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust r. Ecol., 18 (1): 117–143.CrossRefGoogle Scholar
  12. DeNiro M J, Epstein S. 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science, 197 (4300): 261–263.CrossRefGoogle Scholar
  13. Drago M, Crespo E A, Aguilar A, Cardona L, García N, Dans S L, Goodall N. 2009. Historic diet change of the South American sea lion in Patagonia as revealed by isotopic analysis. Mar. Ecol. Prog r. Ser., 384: 273–286.CrossRefGoogle Scholar
  14. Fisk A T, Tittlemier S A, Pranschke J L, Norstrom R J. 2002. Using anthropogenic contaminants and stable isotopes to assess the feeding ecology of Greenland sharks. Ecology, 83 (8): 2 162–2 172.CrossRefGoogle Scholar
  15. Forero M G, Bortolotti G R, Hobson K A, Donazar J A, Bertelloti M, Blanco G. 2004. High trophic overlap within the seabird community of Argentinean Patagonia: a multiscale approach. J. Anim. Ecol., 73 (4): 789–801.CrossRefGoogle Scholar
  16. Froese R, Pauly D. 2011. FishBase. June 2011 version, http://www.fishbase.org. (Accessed on 2016-05-30.Google Scholar
  17. Haimovici M. 1998. Present state and perspectives for the southern Brazil shelf demersal fisheries. Fish. Manag. Ecol., 5 (4): 277–289.CrossRefGoogle Scholar
  18. Jackson G D, Bustamante P, Cherel Y, Fulton E A, Grist E P M, Jackson C H, Nichols P D, Pethybridge H, Phillips K, Ward R D, Xavier J C. 2007. Applying new tools to cephalopod trophic dynamics and ecology: perspectives from the Southern Ocean Cephalopod Workshop, February 2–3, 2006. Rev. Fish Biol. Fish., 17 (2–3): 79–99.CrossRefGoogle Scholar
  19. Laptikhovsky V V. 2004. A comparative study of diet in three sympatric populations of Patagonotothen species (Pisces: Nototheniidae). Polar Biol., 27 (4): 202–205.CrossRefGoogle Scholar
  20. Laptikhovsky V, Arkhipkin A, Brickle P. 2013. From small bycatch to main commercial species: explosion of stocks of rock cod Patagonotothen ramsayi (Regan) in the Southwest Atlantic. Fish. Res., 147: 399–403.CrossRefGoogle Scholar
  21. Leichter J J, Witman J D. 2009. Basin-scale oceanographic influences on marine macroecological patterns. In: Witman J D, Roy K eds. Marine Macroecology. University of Chicago Press, London. p. 205–226.Google Scholar
  22. Mann K H, Lazier J R N. 2006. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. 3 rd edn. Blackwell Publishing Ltd., Cambridge, USA. 512p.Google Scholar
  23. Mouat B, Collins M A, Pompert J. 2001. Patterns in the diet of Illex argentin u s (Cephalopoda: Ommastrephidae) from the Falkland Islands jigging fishery. Fish. Res., 52 (1–2): 41–49.CrossRefGoogle Scholar
  24. Nakamura I, Inada T, Takeda M, Hatanaka H. 1986. Important Fishes Trawled offPatagonia. Japan Marine Fishery Resource Research Centre, Tokyo. 369p.Google Scholar
  25. Nyegaard M, Arkhipkin A, Brickle P. 2004. Variation in the diet of Genypterus blacodes (Ophidiidae) around the Falkland Islands. J. Fish Biol., 65 (3): 666–682.CrossRefGoogle Scholar
  26. Olson D B. 2002. Biophysical dynamics of ocean fronts. In:Robinson A R, McCarthy J J, Rothschild B J eds. The Sea, Volume 12: Biological-Physical Interactions in the Sea. John Wiley & Sons, Inc., New York, USA. p.187-218.Google Scholar
  27. Park J I, Kang C K, Suh H L. 2011. Ontogenetic diet shift in the euphausiid Euphausia pacifica quantified using stable isotope analysis. Mar. Ecol. Prog r. Ser., 429: 103–109.CrossRefGoogle Scholar
  28. Patterson K R. 1998. Life history of Patagonian squid Loligo gahi and growth parameter estimates using least-squares fits to linear and von Bertalanffy models. Mar. Ecol. Progr. Ser., 47: 65–74.CrossRefGoogle Scholar
  29. Pauly D, Christensen V, Froese R, Palomares M L. 2000. Fishing down aquatic food webs. Am. Sci., 88 (1): 46–51.CrossRefGoogle Scholar
  30. Post D M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83 (3): 703–718.CrossRefGoogle Scholar
  31. Quillfeldt P, Cherel Y, Masello J F, Delord K, McGill R A R, Furness R W, Moodley Y, Weimerskirch H. 2015. Half a world apart? Overlap in nonbreeding distributions of Atlantic and Indian Ocean thin-billed prions. PLoS One, 10 (5): e0125007.CrossRefGoogle Scholar
  32. Ramírez F, Afán I, Hobson K A, Bertellotti M, Blanco G, Forero M G. 2014. Natural and anthropogenic factors affecting the feeding ecology of a top marine predator, the Magellanic penguin. Ecosphere, 5 (4): 1–21.CrossRefGoogle Scholar
  33. Santos R A, Haimovici M. 1997. Food and feeding of the short-finned squid Illex argentinus (Cephalopoda: Ommastrephidae) offSouthern Brazil. Fish. Res., 33 (1–3): 139–147.CrossRefGoogle Scholar
  34. Saporiti F, Bearhop S, Vales D G, Silva L, Zenteno L, Tavares M, Crespo E A, Cardona L. 2015. Latitudinal changes in the structure of marine food webs in the Southwestern Atlantic Ocean. Mar. Ecol. Prog r. Ser., 538: 23–34.CrossRefGoogle Scholar
  35. Sielfeld W, Vargas M. 1999. Review of marine fish zoogeography of Chilean Patagonia (42°-57°S). Sci. Mar., 63 (S1): 451–463.CrossRefGoogle Scholar
  36. Van Der Zanden M J, Rasmussen J B. 2001. Variation in δ 15 N and δ 13 C trophic fractionation: implications for aquatic food web studies. Limnol. Oceanogr., 46 (8): 2 061–2 066.CrossRefGoogle Scholar
  37. Waser N A D, Harrison W G, Head E J H, Nielsen B, Lutz V A, Calvert S E. 2000. Geographic variations in the nitrogen isotope composition of surface particulate nitrogen and new production across the North Atlantic Ocean. Deep-Sea Res. I, 47 (7): 1 207–1 226.CrossRefGoogle Scholar
  38. WoRMS Editorial Board. 2014. World register of marine species. www.marinespecies.org. Accessed on 2016-08-30.Google Scholar
  39. Wu J P, Calvert S E, Wong C S. 1997. Nitrogen isotope variations in the subarctic northeast pacific: relationships to nitrate utilization and trophic structure. Deep-Sea Res. I, 44 (2): 287–314.CrossRefGoogle Scholar
  40. Zenteno L, Crespo E, Vales D, Silva L, Saporiti F, Oliveira L R, Secchi E R, Drago M, Aguilar A, Cardona L. 2015. Dietary consistency of male South American sea lions (Otaria flavescens) in southern Brazil during three decades inferred from stable isotope analysis. Mar. Bio l., 162 (2): 275–289.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guoping Zhu (朱国平)
    • 1
    • 2
    • 3
  • Haiting Zhang (张海亭)
    • 1
    • 3
  • Yang Yang (杨洋)
    • 1
    • 3
  • Shaoqin Wang (王少琴)
    • 1
    • 3
  • Lian Wei (魏联)
    • 1
    • 3
  • Qingyuan Yang (杨清源)
    • 1
    • 3
  1. 1.College of Marine SciencesShanghai Ocean UniversityShanghaiChina
  2. 2.National Engineering Research Center for Oceanic FisheriesShanghaiChina
  3. 3.Polar Marine Ecosystem Group, Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Shanghai Ocean UniversityMinistry of EducationShanghaiChina

Personalised recommendations