Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 3, pp 926–932 | Cite as

In vitro prebiotic effects of seaweed polysaccharides

  • Xiaolin Chen (陈晓琳)
  • Yuhao Sun (孙雨豪)
  • Linfeng Hu (胡林峰)
  • Song Liu (刘松)
  • Huahua Yu (于华华)
  • Rong’e Xing (邢荣娥)
  • Rongfeng Li (李荣锋)
  • Xueqin Wang (王雪芹)
  • Pengcheng Li (李鹏程)
Article
  • 102 Downloads

Abstract

Although prebiotic activities of alginate and agar oligosaccharides isolated from seaweeds have been reported, it remains unknown whether seaweed polysaccharides have prebiotic activity. In this study, we isolated polysaccharides from four species of seaweeds, such as Grateloupia filicina (GFP), Eucheuma spinosum (ESP), Ulva pertusa (UPP), and Ascophyllum nodosum (ANP), and characterized their structures and prebiotic effects in vitro. The results showed that these polysaccharides were different in total sugar and sulfate contents as well as monosaccharide composition. GFP and ESP significantly promoted bifidobacterium proliferation and 0.1% ESP and 0.4% GFP resulted in the highest proliferation rates of beneficial bacteria, whereas UPP and ANP inhibited the growth of beneficial bacteria at all tested concentrations (0.1%–0.5%). The different behaviors of the four seaweed-originated polysaccharides might be reflected by differences in monosaccharide composition and structure. Therefore, polysaccharides isolated from GFP and ESP could be utilized as prebiotics. However, more studies must be carried out in vivo.

Keyword

polysaccharides seaweed prebiotic effects in vitro antibacterial activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida-Lima J, Costa L S, Silva N B, Melo-Silveira R F, Silva F V, Felipe M B M C, Medeiros S R B, Leite E L, Rocha H A O. 2010. Evaluating the possible genotoxic, mutagenic and tumor cell proliferation-inhibition effects of a non-anticoagulant, but antithrombotic algal heterofucan. Journal of Applied Toxicology, 30 (7): 708–715.CrossRefGoogle Scholar
  2. Boronat A, Aguilar J. 1981. Metabolism of L-fucose and L-rhamnose in Escherichia coli: differences in induction of propanediol oxidoreductase. Journal of Bacteriology, 147 (1): 181–185.Google Scholar
  3. Cho M, Lee H S, Kang I J, Won M H, You S G. 2011. Antioxidant properties of extract and fractions from Enteromorpha prolifera, a type of green seaweed. Food Chemistry, 127 (3): 999–1 006.CrossRefGoogle Scholar
  4. Costa L S, Fidelis G P, Cordeiro S L, Oliveira R M, Sabry D A, Câmara R B G, Nobre L T D B, Costa M S S P, Almeida-Lima J, Farias E H C, Leite E L, Rocha H A O. 2010. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64 (1): 21–28.CrossRefGoogle Scholar
  5. Cumashi A, Ushakova N A, Preobrazhenskaya M E, D’incecco A, Piccoli A, Totani L, Tinari N, Morozevich G E, Berman A E, Bilan M I, Usov A I, Ustyuzhanina N E, Grachev A A, Sanderson C J, Kelly M, Rabinovich G A, Iacobelli S, Nifantiev N E. 2007. A comparative study of the antiinflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 17 (5): 541–552.CrossRefGoogle Scholar
  6. Cummings J H, Macfarlane G T. 1991. The control and consequences of bacterial fermentation in the human colon. Journal of Applied Bacteriology, 70 (6): 443–459.CrossRefGoogle Scholar
  7. Depeint F, Tzortzis G, Vulevic J, I’Anson K, Gibson G R. 2008. Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebocontrolled intervention study. The American Journal of Clinical Nutrition, 87 (3): 785–791.CrossRefGoogle Scholar
  8. Dierick N, Ovyn A, De Smet S. 2009. Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and on iodine content in edible tissues in pigs. Journal of the Science of Food and Agriculture, 89 (4): 584–594.CrossRefGoogle Scholar
  9. Du Y J, Zhao Y Q, Huang G J. 2012. Study on extraction of polysaccharides from Eucheuma. The Food Industry, 33 (12): 75–78. (in Chinese)Google Scholar
  10. Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28 (3): 350–356.CrossRefGoogle Scholar
  11. Gibson G R, Roberfroid M B. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of Nutrition, 125 (6): 1 401–1 412.Google Scholar
  12. Gómez-Ordóñez E, Jiménez-Escrig A, Rupérez P. 2010. Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Research International, 43 (9): 2 289–2 294.CrossRefGoogle Scholar
  13. Hou Y, Wang J, Jin W H, Zhang H, Zhang Q B. 2012. Degradation of Laminaria japonica fucoidan by hydrogen peroxide and antioxidant activities of the degradation products of different molecular weights. Carbohydrate Polymers, 87 (1): 153–159.CrossRefGoogle Scholar
  14. Hu B, Gong Q G, Wang Y, Ma Y M, Li J B, Yu W G. 2006. Prebiotic effects of neoagaro-oligosaccharides prepared by enzymatic hydrolysis of agarose. Anaerobe, 12 (5–6): 260–266.CrossRefGoogle Scholar
  15. Jiao G L, Yu G L, Zhang J Z, Ewart H S. 2011. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Marine Drugs, 9 (12): 196–223.CrossRefGoogle Scholar
  16. Jiao L L, Li X, Li T B, Jiang P, Zhang L X, Wu M J, Zhang L P. 2009. Characterization and anti-tumor activity of alkaliextracted polysaccharide from Enteromorpha intestinalis. International Immunopharmacology, 9 (3): 324–329.CrossRefGoogle Scholar
  17. Kawai Y, Seno N, Anno K A. 1969. A modified method for chondrosulfatase assay. Analytical Biochemistry, 32 (2): 314–321.CrossRefGoogle Scholar
  18. Kim J, Kong M K, Lee S Y, Lee P C. 2010. Carbon sourcesdependent carotenoid production in metabolically engineered Escherichia coli. World Journal of Microbiology and Biotechnology, 26 (12): 2 231–2 239.CrossRefGoogle Scholar
  19. Leser T D, Mølbak L. 2009. Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environmental Microbiology, 11 (9): 2 194–2 206.CrossRefGoogle Scholar
  20. Macfarlane G T, Macfarlane S. 1997. Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria5. Scandinavian Journal of Gastroenterology, 32 (S222): 3–9.Google Scholar
  21. Manning T S, Gibson G R. 2004. Microbial-gut interactions in health and disease. Prebiotics. Best Practice & Research Clinical Gastroenterology, 18 (2): 287–298.CrossRefGoogle Scholar
  22. Marzorati M, Verhelst A, Luta G, Sinnott R, Verstraete W, Van de Wiele T, Possemiers S. 2010. In vitro modulation of the human gastrointestinal microbial community by plantderived polysaccharide-rich dietary supplements. International Journal of Food Microbiology, 139 (3): 168–176.CrossRefGoogle Scholar
  23. Mori N, Nakasone K, Tomimori K, Ishikawa C. 2012. Beneficial effects of fucoidan in patients with chronic hepatitis C virus infection. World Journal of Gastroenterology, 18 (18): 2 225–2 230.CrossRefGoogle Scholar
  24. Possemiers S, Grootaert C, Vermeiren J, Gross G, Marzorati M, Verstraete W, Van de Wiele T. 2009. The intestinal environment in health and disease—recent insights on the potential of intestinal bacteria to influence human health. Current Pharmaceutical Design, 15 (18): 2 051–2 065.CrossRefGoogle Scholar
  25. Qi X H, Mao W J, Gao Y, Chen Y, Chen Y L, Zhao C Q, Li N, Wang C Y, Yan M X, Lin C, Shan J M. 2012. Chemical characteristic of an anticoagulant-active sulfated polysaccharide from Enteromorpha clathrata. Carbohydrate Polymers, 90 (4): 1 804–1 810.CrossRefGoogle Scholar
  26. Sanchez J I, Marzorati M, Grootaert C, Baran M, Van Craeyveld V, Courtin C M, Broekaert W F, Delcour J A, Verstraete W, van de Wiele T. 2009. Arabinoxylanoligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the simulator of human intestinal microbial ecosystem. Microbial Biotechnology, 2 (1): 101–113.CrossRefGoogle Scholar
  27. Silva R O, Santana A P M, Carvalho N S, Bezerra T S, Oliveira C B, Damasceno S R B, Chaves L S, Freitas A L P, Soares P M G, Souza M H L P, Barbosa A L R and Medeiros J V R. 2012. A sulfated-polysaccharide fraction from seaweed Gracilaria birdiae prevents naproxen-induced gastrointestinal damage in rats. Marine Drugs, 10 (12): 2 618–2 633.CrossRefGoogle Scholar
  28. Sweeney T, Dillon S, Fanning J, Egan J, O’Shea C J, Figat S, Gutierrez J J M. Mannion C, Leonard F, O’Doherty J V. 2011. Evaluation of seaweed-derived polysaccharides on indices of gastrointestinal fermentation and selected populations of microbiota in newly weaned pigs challenged with Salmonella Typhimurium. Animal Feed Science and Technology, 165 (1–2): 85–94.CrossRefGoogle Scholar
  29. Turnbaugh P J, Ley R E, Hamady M, Fraser-Liggett C M, Knight R, Gordon J I. 2007. The human microbiome project. Nature, 449 (7164): 804–810.CrossRefGoogle Scholar
  30. Tzortzis G, Goulas A K, Gee J M, Gibson G R. 2005. A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. The Journal of Nutrition, 135 (7): 1 726–1 731.CrossRefGoogle Scholar
  31. Vulevic J, Juric A, Tzortzis G, Gibson G R. 2013. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. The Journal of Nutrition, 143 (3): 324–331.CrossRefGoogle Scholar
  32. Vulevic J, Juric A, Walton G E, Claus S P, Tzortzis G, Toward R E, Gibson G R. 2015. Influence of galactooligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. British Journal of Nutrition, 114 (4): 586–595.CrossRefGoogle Scholar
  33. Wang T T, Sun Y X, Jin L J, Xu Y P, Wang L, Ren T J, Wang K L. 2009. Enhancement of non-specific immune response in sea cucumber (Apostichopus japonic u s) by Astragalus membranaceus and its polysaccharides. Fish & Shellfish Immunology, 27 (6): 757–762.CrossRefGoogle Scholar
  34. Wang Y, Han F, Hu B, Li J B, Yu W G. 2006. In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. Nutrition Research, 26 (11): 597–603.CrossRefGoogle Scholar
  35. Wijesinghe W A J P, Jeon Y J. 2012. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: a review. Carbohydrate Polymers, 88 (1): 13–20.CrossRefGoogle Scholar
  36. Yan W, Niu Y G, Lv J L, Xie Z H, Jin L, Yao W B, Gao X D, Yu L L. 2013. Characterization of a heteropolysaccharide isolated from diploid Gynostemma pentaphyllum Makino. Carbohydrate Polymers, 92 (2): 2 111–2 117.CrossRefGoogle Scholar
  37. Yu Q M, Yan J, Wang S C, Ji L L, Ding K, Vella C, Wang Z T, Hu Z B. 2012. Antiangiogenic effects of GFP08, an agaran-type polysaccharide isolated from Grateloupia filicina. Glycobiology, 22 (10): 1 343–1 352.CrossRefGoogle Scholar
  38. Zaporozhets T S, Besednova N, Kuznetsova T A, Zvyagintseva T N, Makarenkova I D, Kryzhanovsky S P, Melnikov V G. 2014. The prebiotic potential of polysaccharides and extracts of seaweeds. Russian Journal of Marine Biology, 40 (1): 1–9.CrossRefGoogle Scholar
  39. Zhang J J, Zhang Q B, Wang J, Shi X L, Zhang Z S. 2009. Analysis of the monosaccharide composition of fucoidan by precolumn derivation HPLC. Chinese Journal of Oceanology and Limnology, 27 (3): 578–582.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaolin Chen (陈晓琳)
    • 1
  • Yuhao Sun (孙雨豪)
    • 1
  • Linfeng Hu (胡林峰)
    • 2
  • Song Liu (刘松)
    • 1
  • Huahua Yu (于华华)
    • 1
  • Rong’e Xing (邢荣娥)
    • 1
  • Rongfeng Li (李荣锋)
    • 1
  • Xueqin Wang (王雪芹)
    • 1
  • Pengcheng Li (李鹏程)
    • 1
  1. 1.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.School of Chemistry & Chemical EngineeringHenan Institute of Science and TechnologyXinxiangChina

Personalised recommendations