Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 3, pp 818–826 | Cite as

Development and evaluation of specific PCR primers targeting the ribosomal DNA-internal transcribed spacer (ITS) region of peritrich ciliates in environmental samples

  • Lei Su (苏蕾)
  • Qianqian Zhang (张倩倩)
  • Jun Gong (龚骏)
Article

Abstract

Peritrich ciliates are highly diverse and can be important bacterial grazers in aquatic ecosystems. Morphological identifications of peritrich species and assemblages in the environment are time-consuming and expertise-demanding. In this study, two peritrich-specific PCR primers were newly designed to amplify a fragment including the internal transcribed spacer (ITS) region of ribosomal rDNA from environmental samples. The primers showed high specificity in silico, and in tests with peritrich isolates and environmental DNA. Application of these primers in clone library construction and sequencing yielded exclusively sequences of peritrichs for water and sediment samples. We also found the ITS1, ITS2, ITS, D1 region of 28S rDNA, and ITS+D1 region co-varied with, and generally more variable than, the V9 region of 18S rDNA in peritrichs. The newly designed specific primers thus provide additional tools to study the molecular diversity, community composition, and phylogeography of these ecologically important protists in different systems.

Keyword

Ciliophora Peritrichia clone library internal transcribed spacer (ITS) rDNA specific PCR primers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

343_2018_6326_MOESM1_ESM.pdf (209 kb)
Supplementary material, approximately 212 KB.

References

  1. Altschul S F, Madden T L, Schäffer A A, Zhang J H, Zhang Z, Miller W, Lipman D J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Research, 25 (17): 3 389–3 402, https://doi.org/10.1093/nar/25.17.3389.CrossRefGoogle Scholar
  2. Amaral-Zettler L A, McCliment E A, Ducklow H W, Huse S M. 2009. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One, 4 (7): e6372, https://doi.org/10.1371/journal.pone.0006372.CrossRefGoogle Scholar
  3. Bachy C, Dolan J R, López-García P, Deschamps P, Moreira D. 2013. Accuracy of protist diversity assessments: morphology compared with cloning and direct pyrosequencing of 18S rRNA genes and ITS regions using the conspicuous tintinnid ciliates as a case study. The ISME Journal, 7 (2): 244–255, https://doi.org/10.1038/ismej.2012.106.CrossRefGoogle Scholar
  4. Clamp J C, Coats D W. 2000. Planeticovorticella finleyi n.g., n.sp. (Peritrichia, Vorticellidae), a planktonic ciliate with a polymorphic life cycle. Invertebrate Biology, 119 (1): 1–16, https://doi.org/10.1111/j.1744-7410.2000.tb00169.x.CrossRefGoogle Scholar
  5. Foissner W, Agatha S, Berger H. 2002. Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib Desert. Biologiezentrum des Oberösterreichischen Landesmuseums, Linz, Austria. 1 459p.Google Scholar
  6. Foissner W, Berger H, Kohmann F. 1991. Taxonomische und okologische Revision der Ciliaten des Saprobiensystems. Band II: Peritrichia, Heterotrichida, Odontostomatida. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft, 5/92: 1–502.Google Scholar
  7. Fried J, Mayr G, Berger H, Traunspurger W, Psenner R, Lemmer H. 2000. Monitoring protozoa and metazoa biofilm communities for assessing wastewater quality impact and reactor up-scaling effects. Water Science and Technology, 41 (4–5): 309–316.CrossRefGoogle Scholar
  8. Fu R, Gong J. 2017. Single cell analysis linking ribosomal (r) DNA and rRNA copy numbers to cell size and growth rate provides insights into molecular protistan ecology. Journal of Eukaryotic Microbiology, https://doi.org/10.1111/jeu.12425.Google Scholar
  9. Galtier N, Gouy M, Gautier C. 1996. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics, 12 (6): 543–548, https://doi.org/10.1093/bioinformatics/12.6.543.CrossRefGoogle Scholar
  10. Gentekaki E, Lynn D. 2012. Spatial genetic variation, phylogeography and barcoding of the peritrichous ciliate Carchesium polypinum. European Journal of Protistology, 48 (4): 305–313, https://doi.org/10.1016/j.ejop.2012.04.001.CrossRefGoogle Scholar
  11. Gong J, Dong J, Liu X H, Massana R. 2013. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist, 164 (3): 369–379, https://doi.org/10.1016/j.protis.2012.11.006.CrossRefGoogle Scholar
  12. Guo X H, Zhang Q Q, Zhang X L, Zhang J S, Gong J. 2015. Marine fungal communities in water and surface sediment of a sea cucumber farming system: habitat-differentiated distribution and nutrients driving succession. Fungal Ecology, 14: 14–87. https://doi.org/10.1016/j.funeco.2014.12.001.CrossRefGoogle Scholar
  13. Hall T A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41 (2): 95–98.Google Scholar
  14. Hillis D M, Dixon M T. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. The Quarterly Review of Biology, 66 (4): 411–453.CrossRefGoogle Scholar
  15. Huang J R, Lin W H, Zeng W, Xu R L. 2005. The effect of sediment restoration on the protozoan community in shrimp culture ponds. Ecologic Science, 24 (4): 326–329. (in Chinese with English abstract)Google Scholar
  16. Huber T, Faulkner G, Hugenholtz P. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics, 20 (14): 2 317–2 319, https://doi.org/10.1093/bioinformatics/bth226.CrossRefGoogle Scholar
  17. Ji D D, Song W B, Al-Rasheid K A S, Li L F. 2005. Taxonomic characterization of two marine peritrichous ciliates, Pseudovorticella clampi n. sp. and Zoothamnium pararbuscula n. sp. (Ciliophora: Peritrichia), from North China. Journal of Eukaryotic Microbiology, 52 (2): 159–169, https://doi.org/10.1111/j.1550-7408.2005.05-3353.x.CrossRefGoogle Scholar
  18. Ji D D, Sun P, Warren A, Song W B. 2009. Colonial sessilid peritrichs. In: Song W B, Warren A, Hu X eds. Free-living ciliates in the Bohai and Yellow Seas, China. Science Press, Beijing, China. p.257-286. (in Chinese)Google Scholar
  19. Katoh K, Misawa K, Kuma K I, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30 (14): 3 059–3 066, https://doi.org/10.1093/nar/gkf436.CrossRefGoogle Scholar
  20. Liu X H, Gong J. 2012. Revealing the diversity and quantity of Peritrich ciliates in environmental samples using specific primer-based PCR and quantitative PCR. Microbes and Environments, 27 (4): 497–503, https://doi.org/10.1264/jsme2.ME12056.CrossRefGoogle Scholar
  21. Loy A, Arnold R, Tischler P, Rattei T, Wagner M, Horn M. 2008. probeCheck—a central resource for evaluating oligonucleotide probe coverage and specificity. Environmental Microbiology, 10 (10): 2 894–2 898, https://doi.org/10.1111/j.1462-2920.2008.01706.x.CrossRefGoogle Scholar
  22. Markmann M, Tautz D. 2005. Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 (1462): 1 917–1 924, https://doi.org/10.1098/rstb.2005.1723.CrossRefGoogle Scholar
  23. Martín-Cereceda M, Serrano S, Guinea A. 2001. Biofilm communities and operational monitoring of a rotating biological contactor system. Water, Air, and Soil Pollution, 126 (3–4): 193–206, https://doi.org/10.1023/A:1005291015122.CrossRefGoogle Scholar
  24. Maurin L C, Himmel D, Mansot J L, Gros O. 2010. Raman microspectrometry as a powerful tool for a quick screening of thiotrophy: an application on mangrove swamp meiofauna of Guadeloupe (F.W.I.). Marine Environmental Research, 69 (5): 382–389, https://doi.org/10.1016/j.marenvres.2010.02.001.CrossRefGoogle Scholar
  25. Orsi W, Biddle J F, Edgcomb V. 2013. Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One, 8 (2): e56335, https://doi.org/10.1371/journal.pone.0056335.CrossRefGoogle Scholar
  26. Rocap G, Distel D L, Waterbury J B, Chisholm S W. 2002. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Applied and Environmental Microbiology, 68 (3): 1 180–1 191, https://doi.org/10.1128/AEM.68.3.1180-1191.2002.CrossRefGoogle Scholar
  27. Ronquist F, Huelsenbeck J P. 2003. MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics, 19 (12): 1 572–1 574, https://doi.org/10.1093/bioinformatics/btg180.CrossRefGoogle Scholar
  28. Schloss P D, Westcott S L, Ryabin T, Hall J R, Hartmann M, Hollister E B, Lesniewski R A, Oakley B B, Parks D H, Robinson C J, Sahl J W, Stres B, Thallinger G G, Van Horn D J, Weber C F. 2009. Introducing mothur: opensource, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75 (23): 7 537–7 541, https://doi.org/10.1128/AEM.01541-09.CrossRefGoogle Scholar
  29. Schoch C L, Seifert K A, Huhndorf S, Robert V, Spouge J L, Levesque C A, Chen W, Fungal Barcoding Consortium. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109 (16): 6 241–6 246, https://doi.org/10.1073/pnas.1117018109.CrossRefGoogle Scholar
  30. Sherr B F, Sherr E B, Rassoulzadegan F. 1988. Rates of digestion of bacteria by marine phagotrophic protozoa: temperature dependence. Applied and Environmental Microbiology, 54 (5): 1 091–1 095.Google Scholar
  31. Shi X L, Liu X J, Liu G J, Sun Z Q, Xu H L. 2012. An approach to analyzing spatial patterns of protozoan communities for assessing water quality in the Hangzhou section of Jing-Hang Grand Canal in China. Environmental Science and Pollution Research, 19 (3): 739–747, https://doi.org/10.1007/s11356-011-0615-0.CrossRefGoogle Scholar
  32. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30 (9): 1 312–1 313, https://doi.org/10.1093/bioinformatics/btu033.CrossRefGoogle Scholar
  33. Stern R F, Andersen R A, Jameson I, Küpper F C, Coffroth M A, Vaulot D, Le Gall F, Véron B, Brand J J, Skelton H, Kasai F, Lilly E L, Keeling P J. 2012. Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker. PLoS One, 7 (8): e42780, https://doi.org/10.1371/journal.pone.0042780.CrossRefGoogle Scholar
  34. Sun P, Clamp J C, Xu D P, Huang B Q, Shin M K, Turner F. 2013. An ITS-based phylogenetic framework for the genus Vorticella: finding the molecular and morphological gaps in a taxonomically difficult group. Proceedings of the Royal Society B: Biological Science, 280 (1771): 20131177, https://doi.org/10.1098/rspb.2013.1177.CrossRefGoogle Scholar
  35. Sun P, Clamp J, Xu D P, Kusuoka Y, Miao W. 2012. Vorticella Linnaeus, 1767 (Ciliophora, Oligohymenophora, Peritrichia) is a grade not a clade: redefinition of Vorticella and the families Vorticellidae and Astylozoidae using molecular characters derived from the gene coding for small subunit ribosomal RNA. Protist, 163 (1): 129–142, https://doi.org/10.1016/j.protis.2011.06.005.CrossRefGoogle Scholar
  36. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30 (12): 2 725–2 729, https://doi.org/10.1093/molbev/mst197.CrossRefGoogle Scholar
  37. Xu H L, Min G S, Choi J K, Jung J H, Park M H. 2009. An approach to analyses of periphytic ciliate colonization for monitoring water quality using a modified artificial substrate in Korean coastal waters. Marine Pollution Bulletin, 58 (9): 1 278–1 285, https://doi.org/10.1016/j.marpolbul.2009.05.003.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lei Su (苏蕾)
    • 1
    • 2
  • Qianqian Zhang (张倩倩)
    • 1
    • 2
  • Jun Gong (龚骏)
    • 1
    • 2
  1. 1.Laboratory of Microbial Ecology and Matter Cycles, Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations