Journal of Oceanology and Limnology

, Volume 36, Issue 3, pp 795–804 | Cite as

Microbial ecological associations in the surface sediments of Bohai Strait

  • Bin Wang (王斌)
  • Hongmei Liu (刘红梅)
  • Haitian Tang (唐海田)
  • Xiaoke Hu (胡晓珂)Email author


Microbial communities play key roles in the marine ecosystem. Despite a few studies on marine microbial communities in deep straits, ecological associations among microbial communities in the sediments of shallow straits have not been fully investigated. The Bohai Strait in northern China (average depth less than 20 m) separates the Bohai Sea from the Yellow Sea and has organic-rich sediments. In this study, in the summer of 2014, six stations across the strait were selected to explore the taxonomic composition of microbial communities and their ecological associations. The four most abundant classes were Gammaproteobacteria, Deltaproteobacteria, Bacilli and Flavobacteriia. Temperature, total carbon, depth, nitrate, fishery breeding and cold water masses influenced the microbial communities, as suggested by representational difference and composition analyses. Network analysis of microbial associations revealed that key families included Flavobacteriaceae, Pirellulaceae and Piscirickettsiaceae. Our findings suggest that the families with high phylogenetic diversity are key populations in the microbial association network that ensure the stability of microbial ecosystems. Our study contributes to a better understanding of microbial ecology in complex hydrological environments.


surface sediment network analysis Bohai Strait evolution of microbial associations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The manuscript was kindly revised by Dr. Shiliang Anthony Liu from Louisiana State University.


  1. Albert R, Jeong H, Barabási A L. 2000. Error and attack tolerance of complex networks. Nature, 406 (6794): 378–382.CrossRefGoogle Scholar
  2. Barberán A, Bates S T, Casamayor E O, Fierer N. 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J., 6 (2): 343–351.CrossRefGoogle Scholar
  3. Behbahani R, Hosseinyar G, Lak R. 2015. The controlling parameters on organic matter preservation within the bottom sediments of the northern part of the Persian Gulf. Neues Jahrb. Geol. Paläontol. A bh., 276 (3): 267–283.CrossRefGoogle Scholar
  4. Bi N S, Yang Z S, Wang H J, Fan D J, Sun X X, Lei K. 2011. Seasonal variation of suspended-sediment transport through the southern Bohai Strait. Estuar. Coast. Shelf Sci., 93 (3): 239–247.CrossRefGoogle Scholar
  5. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U. 2006. Complex networks: structure and dynamics. Physics Reports, 424 (4–5): 175–308.CrossRefGoogle Scholar
  6. Bowman J P. 2006. The marine clade of the family flavobacteriaceae: the genera aequorivita, arenibacter, cellulophaga, croceibacter, formosa, gelidibacter, gillisia, maribacter, mesonia, muricauda, polaribacter, psychroflexus, psychroserpens, robiginitalea, salegentibacter, tenacibaculum, ulvibacter, vitellibacter and zobellia. In:Dworkin M, Falkow S, Rosenberg E, Schleifer K H, Stackebrandt E eds. The Prokaryotes: Volume 7: Proteobacteria: Delta, Epsilon Subclass. Springer, New York. p.677-694.Google Scholar
  7. Buttigieg P L, Ramette A. 2015. Biogeographic patterns of bacterial microdiversity in Arctic deep-sea sediments (HAUSGARTEN, Fram Strait). Front. Microbiol., 5: 660.CrossRefGoogle Scholar
  8. Campbell B J, Kirchman D L. 2013. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J., 7 (1): 210–220.CrossRefGoogle Scholar
  9. Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knights R, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods, 7 (5): 335–336.CrossRefGoogle Scholar
  10. Chaffron S, Rehrauer H, Pernthaler J, von Mering C. 2010. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Research, 20 (7): 947–959.CrossRefGoogle Scholar
  11. Coutinho F H, Meirelles P M, Moreira A P B, Paranhos R P, Dutilh B E, Thompson F L. 2015. Niche distribution and influence of environmental parameters in marine microbial communities: a systematic review. PeerJ, 3: e1008.CrossRefGoogle Scholar
  12. Coveley S, Elshahed M S, Youssef N H. 2015. Response of the rare biosphere to environmental stressors in a highly diverse ecosystem (Zodletone spring, OK, USA). PeerJ, 3: e1182.CrossRefGoogle Scholar
  13. Dixon J L, Osburn C L, Paerl H W, Peierls B L. 2014. Seasonal changes in estuarine dissolved organic matter due to variable flushing time and wind-driven mixing events. Estuar. Coast Shelf S ci., 151: 151–210.Google Scholar
  14. Dixon P. 2003. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14 (6): 927–930.CrossRefGoogle Scholar
  15. Edgar R C, Haas B J, Clemente J C, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27 (16): 2 194–2 200.CrossRefGoogle Scholar
  16. Edgar R C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26 (19): 2 460–2 461.CrossRefGoogle Scholar
  17. Elsabé M J, Brüchert V, Fuchs B M. 2012. Vertical shifts in the microbial community structure of organic-rich Namibian shelf sediments. African Journal of Microbiology Research, 6 (17): 3 887–3 897.Google Scholar
  18. Faust K, Raes J. 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol., 10 (8): 538–550.CrossRefGoogle Scholar
  19. Freilich S, Kreimer A, Meilijson I, Gophna U, Sharan R, Ruppin E. 2010. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Research, 38 (12): 3 857–3 868.CrossRefGoogle Scholar
  20. Fryer J L, Hedrick R P. 2003. Piscirickettsia salmonis: a Gramnegative intracellular bacterial pathogen of fish. J. Fish Dis., 26 (5): 251–262.CrossRefGoogle Scholar
  21. Fuhrman J A. 2009. Microbial community structure and its functional implications. Nature, 459 (7244): 193–199.CrossRefGoogle Scholar
  22. Guan X Y, Zhu L L, Li Y X, Xie Y X, Zhao M Z, Luo X M. 2014. Composition and variation of sediment bacterial and nirS-harboring bacterial communities at representative sites of the Bohai Gulf coastal zone, China. World J. Microb iol. Biot echnol., 30 (4): 1 291–1 300.CrossRefGoogle Scholar
  23. Hibbing M E, Fuqua C, Parsek M R, Peterson S B. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8 (1): 15–25.CrossRefGoogle Scholar
  24. Jacob M, Soltwedel T, Boetius A, Ramette A. 2013. Biogeography of deep-sea benthic bacteria at regional scale (LTER HAUSGARTEN, Fram Strait, Arctic). PLoS One, 8 (9): e72779.CrossRefGoogle Scholar
  25. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research, 45 (D1): D353–D361.CrossRefGoogle Scholar
  26. Korneeva V A, Pimenov N V, Krek A V, Tourova T P, Bryukhanov A L. 2015. Sulfate-reducing bacterial communities in the water column of the Gdansk Deep (Baltic Sea). Microbiology, 84 (2): 268–277.CrossRefGoogle Scholar
  27. Langille M G I, Zaneveld J, Caporaso J G, McDonald D, Knights D, Reyes J A, Clemente J C, Burkepile D E, Vega Thurber R L, Knight R, Beiko R G, Huttenhower C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotech., 31 (9): 814–821.CrossRefGoogle Scholar
  28. Lennon J T, Aanderud Z T, Lehmkuhl B K, Schoolmaster D R Jr. 2012. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology, 93 (8): 1 867–1 879.CrossRefGoogle Scholar
  29. Li G X, Han X B, Yue S H, Wen G Y, Yang R M, Kusky T M. 2006. Monthly variations of water masses in the East China Seas. Cont. Shelf Res., 26 (16): 1 954–1 970.CrossRefGoogle Scholar
  30. Li Y F, Wolanski E, Zhang H. 2015. What processes control the net currents through shallow straits? A review with application to the Bohai Strait, China. Estuar. Coast. Shelf S ci., 158: 1–11.CrossRefGoogle Scholar
  31. Liu J W, Liu X S, Wang M, Qiao Y L, Zheng Y F, Zhang X H. 2015. Bacterial and archaeal communities in sediments of the North Chinese marginal seas. Microbial. Ecol., 70 (1): 105–117.CrossRefGoogle Scholar
  32. Louvado A, Gomes N C M, Simões M M Q, Almeida A, Cleary D F R, Cunha A. 2015. Polycyclic aromatic hydrocarbons in deep sea sediments: microbe–pollutant interactions in a remote environment. Sci. Total Env ron., 526: 526–312.Google Scholar
  33. Lupatini M, Suleiman A K A, Jacques R J S, Antoniolli Z I, de Siqueira Ferreira A, Kuramae E E, Roesch L F W. 2014. Network topology reveals high connectance levels and few key microbial genera within soils. Front. Env ron. Sci., 2: 10.Google Scholar
  34. Macalady J L, Dattagupta S, Schaperdoth I, Jones D S, Druschel G K, Eastman D. 2008. Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. ISME J., 2 (6): 590–601.CrossRefGoogle Scholar
  35. Marshall S H, Gómez F A, Klose K E. 2014. The Genus Piscirickettsia. In: Rosenberg E, DeLong E F, Lory S, Stackebrandt E, Thompson F eds. The Prokaryotes: Gammaproteobacteria. Springer, Berlin Heidelberg. p.565-573.Google Scholar
  36. Maruyama A, Honda D, Yamamoto H, Kitamura K, Higashihara T. 2000. Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int. J. Syst. Evol. Microbiol., 50 (2): 835–846.CrossRefGoogle Scholar
  37. Molloy S. 2014. Environmental microbiology: disentangling syntrophy. Nature Reviews Microbiology, 12 (1): 7.Google Scholar
  38. Mu F H, Somerfield P J, Warwick R M, Zhang Z N. 2002. Large-scale spatial patterns in the community structure of benthic harpacticoid copepods in the Bohai Sea, China. The Raffles Bulletin of Zoology, 50 (1): 17–26.Google Scholar
  39. Na H, Lever M A, Kjeldsen K U, Schulz F, Jørgensen B B. 2015. Uncultured Desulfobacteraceae and crenarchaeotal group C3 incorporate 13 C-acetate in coastal marine sediment. Environ. Microbiol. Rep., 7 (4): 614–622.CrossRefGoogle Scholar
  40. Naimie C E, Blain C A, Lynch D R. 2001. Seasonal mean circulation in the Yellow Sea—a model-generated climatology. Cont. Shelf Res., 21 (6–7): 667–695.CrossRefGoogle Scholar
  41. Nemergut D R, Schmidt S K, Fukami T, O'Neill S P, Bilinski T M, Stanish L F, Knelman J E, Darcy J L, Lynch R C, Wickey P, Ferrenberg S. 2013. Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews, 77 (3): 342–356.CrossRefGoogle Scholar
  42. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. 1999. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 27 (1): 29–34.CrossRefGoogle Scholar
  43. Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, Goto S, Kanehisa M. 2008. KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Research, 36 (S2): W423–W426.CrossRefGoogle Scholar
  44. Piontek J, Sperling M, Nöthig E M, Engel A. 2015. Multiple environmental changes induce interactive effects on bacterial degradation activity in the Arctic Ocean. Limnology and Oceanography, 60 (4): 1 392–1 410.CrossRefGoogle Scholar
  45. Pontarp M, Canbäck B, Tunlid A, Lundberg P. 2012. Phylogenetic analysis suggests that habitat filtering is structuring marine bacterial communities across the globe. Microbial. Ecol., 64 (1): 8–17.CrossRefGoogle Scholar
  46. Pujalte M J, Lucena T, Ruvira M A, Arahal D R, Macián M C. 2014. The family rhodobacteraceae. In: Rosenberg E, DeLong E F, Lory S, Stackebrandt E, Thompson F eds. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer, Berlin Heidelberg. p.439-512.Google Scholar
  47. Sakala R M, Hayashidani H, Kato Y, Kaneuchi C, Ogawa M. 2002. Isolation and characterization of Lactococcus piscium strains from vacuum-packaged refrigerated beef. Journal of Applied Microbiology, 92 (1): 173–179.CrossRefGoogle Scholar
  48. Signori C N, Thomas F, Enrich-Prast A, Pollery R C G, Sievert S M. 2014. Microbial diversity and community structure across environmental gradients in Bransfield Strait, Western Antarctic Peninsula. Front. Microbiol., 5: 647.CrossRefGoogle Scholar
  49. Smoot M E, Ono K, Ruscheinski J, Wang P L, Ideker T. 2011. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27 (3): 431–432.CrossRefGoogle Scholar
  50. Wang H, Wang B, Dong W W, Hu X K. 2016. Co-acclimation of bacterial communities under stresses of hydrocarbons with different structures. Sci. Rep., 6: 34 588.CrossRefGoogle Scholar
  51. Wang L P, Liu L S, Zheng B H, Zhu Y Z, Wang X. 2013. Analysis of the bacterial community in the two typical intertidal sediments of Bohai Bay, China by pyrosequencing. Mar. Pollut. Bull., 72 (1): 181–187.CrossRefGoogle Scholar
  52. Wang L P, Zheng B H, Lei K. 2015. Diversity and distribution of bacterial community in the coastal sediments of Bohai Bay, China. Acta Oceanologica Sinica, 34 (10): 122–131.CrossRefGoogle Scholar
  53. Wang L P, Zheng B H, Nan B X, Hu P L. 2014. Diversity of bacterial community and detection of nir S-and nir Kencoding denitrifying bacteria in sandy intertidal sediments along Laizhou Bay of Bohai Sea, China. Mar. Pollut. Bull., 88 (1–2): 215–223.CrossRefGoogle Scholar
  54. Wu H B, Guo Y T, Wang G H, Dai S K, Li X. 2011. Composition of bacterial communities in deep-sea sediments from the South China Sea, the Andaman Sea and the Indian Ocean. African Journal of Microbiology Research, 5 (29): 5 273–5 283.Google Scholar
  55. Zhang J J, Kobert K, Flouri T, Stamatakis A. 2014. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 30 (5): 614–620.CrossRefGoogle Scholar
  56. Zhang J, Yu Z G, Raabe T, Liu S M, Starke A, Zou L, Gao H W, Brockmann U. 2004. Dynamics of inorganic nutrient species in the Bohai seawaters. J. Mar. Syst., 44 (3–4): 189–212.CrossRefGoogle Scholar
  57. Zhang X M, Liu W, Schloter M, Zhang G M, Chen Q S, Huang J H, Li L H, Elser J J, Han X G. 2013. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS One, 8 (10): e76500.CrossRefGoogle Scholar
  58. Zheng B H, Wang L P, Liu L S. 2014. Bacterial community structure and its regulating factors in the intertidal sediment along the Liaodong Bay of Bohai Sea, China. Microbiol. Res., 169 (7–8): 585–592.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bin Wang (王斌)
    • 1
    • 2
  • Hongmei Liu (刘红梅)
    • 3
  • Haitian Tang (唐海田)
    • 4
  • Xiaoke Hu (胡晓珂)
    • 1
    Email author
  1. 1.Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of OceanYantai UniversityYantaiChina
  4. 4.Yantai Marine Environment Monitoring Central Station of Oceanic AdministrationYantaiChina

Personalised recommendations