Journal of Oceanology and Limnology

, Volume 36, Issue 2, pp 317–328 | Cite as

Effects of elevated pCO2 on physiological performance of marine microalgae Dunaliella salina (Chlorophyta, Chlorophyceae

  • Shunxin Hu (胡顺鑫)
  • You Wang (王悠)
  • Ying Wang (王影)
  • Yan Zhao (赵妍)
  • Xinxin Zhang (张鑫鑫)
  • Yongsheng Zhang (张永生)
  • Ming Jiang (姜铭)
  • Xuexi Tang (唐学玺)


The present study was conducted to determine the effects of elevated pCO2 on growth, photosynthesis, dark respiration and inorganic carbon acquisition in the marine microalga Dunaliella salina. To accomplish this, D. salina was incubated in semi-continuous cultures under present-day CO2 levels (390 μatm, pHNBS: 8.10), predicted year 2100 CO2 levels (1 000 μatm, pHNBS: 7.78) and predicted year 2300 CO2 levels (2 000 μatm, pHNBS: 7.49). Elevated pCO2 significantly enhanced photosynthesis (in terms of gross photosynthetic O2 evolution, effective quantum yield (ΔF/F' m ), photosynthetic efficiency (α), maximum relative electron transport rate (rETRmax) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity) and dark respiration of D. salina, but had insignificant effects on growth. The photosynthetic O2 evolution of D. salina was significantly inhibited by the inhibitors acetazolamide (AZ), ethoxyzolamide (EZ) and 4,4’-diisothiocyanostilbene-2,2′-disulfonate (DIDS), indicating that D. salina is capable of acquiring HCOˉ 3 via extracellular carbonic anhydrase and anion-exchange proteins. Furthermore, the lower inhibition of the photosynthetic O2 evolution at high pCO2 levels by AZ, EZ and DIDS and the decreased carbonic anhydrase showed that carbon concentrating mechanisms were down-regulated at high pCO2. In conclusion, our results show that photosynthesis, dark respiration and CCMs will be affected by the increased pCO2/low pH conditions predicted for the future, but that the responses of D. salina to high pCO2/low pH might be modulated by other environmental factors such as light, nutrients and temperature. Therefore, further studies are needed to determine the interactive effects of pCO2, temperature, light and nutrients on marine microalgae.


ocean acidification growth photosynthesis CO2 CCMs Dunaliella salina 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank all of the members of the laboratory and Dr. LIANG in the College of Fisheries of Ocean University of China for their help.


  1. Axelsson L, Ryberg H, Beer S. 1995. Two modes of bicarbonate utilization in the marine green macroalga Ulva lactuca. Plant Cell Environ., 18 (4): 439–445.CrossRefGoogle Scholar
  2. Badger M R, Andrews T J, Whitney S M, et al. 1998. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot, 76 (6): 1052–1071.Google Scholar
  3. Booth W A, Beardall J. 1991. Effects of salinity on inorganic carbon utilization and carbonic anhydrase activity in the halotolerant alga Dunaliella salina (Chlorophyta). Phycologia, 30 (2): 220–225.CrossRefGoogle Scholar
  4. Burkhardt S, Amoroso G, Riebesell U, Sültemeyer D. 2001. CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol. Oceanogr., 46 (6): 1378–1391.CrossRefGoogle Scholar
  5. Caldeira K, Wickett M E. 2003. Oceanography: anthropogenic carbon and ocean pH. Nature, 425 (6956): 365.CrossRefGoogle Scholar
  6. del Giorgio P A, Duarte C M. 2002. Respiration in the open ocean. Nature, 420 (6914): 379–384.CrossRefGoogle Scholar
  7. Eberlein T, van de Waal D B, Brandenburg K M, John U, Voss M, Achterberg E P, Rost B. 2016. Interactive effects of ocean acidification and nitrogen limitation on two bloomforming dinoflagellate species. Mar. Ecol. Prog. Ser., 543: 127–140.CrossRefGoogle Scholar
  8. Falkowski P G, Raven J A. 2013. Aquatic Photosynthesis. Princeton University Press, Princeton.CrossRefGoogle Scholar
  9. Fernández P A, Roleda M Y, Hurd C L. 2015. Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera. Photosynth. Res., 124 (3): 293–304.CrossRefGoogle Scholar
  10. Fu F X, Warner M E, Zhang Y H, Feng Y Y, Hutchins D A. 2007. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). J. Phycol., 43 (3): 485–496.CrossRefGoogle Scholar
  11. Fu F X, Zhang Y H, Warner M E, Feng Y Y, Sun J, Hutchins D A. 2008. A comparison of future increased CO2 and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum. Harmful Algae, 7 (1): 76–90.CrossRefGoogle Scholar
  12. Gao K S, Xu J T, Gao G, Li Y H, Hutchins D A, Huang B Q, Wang L, Zheng Y, Jin P, Cai X N, Häder D P, Li W, Xu K, Liu N N, Riebesell U. 2012. Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat. Climate Change, 2 (7): 519–523.Google Scholar
  13. Geider R J, Osborne B A. 1989. Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. New Phytol., 112 (3): 327–341.CrossRefGoogle Scholar
  14. Gerard V A, Driscoll T. 1996. A spectrophotometric assay for rubisco activity: application to the kelp Laminaria saccharina and implications for radiometric assays1. J. Phycol., 32 (5): 880–884CrossRefGoogle Scholar
  15. Giordano M, Beardall J, Raven J A. 2005. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol., 56 (1): 99–131.CrossRefGoogle Scholar
  16. Giordano M, Maberly S C. 1989. Distribution of carbonic anhydrase in British marine macroalgae. Oecologia., 81 (4): 534–539.CrossRefGoogle Scholar
  17. Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W L, Chanley M H eds. Culture of Marine Invertebrate Animals. Springer, New York, USA. p.29–60CrossRefGoogle Scholar
  18. Guinotte J M, Fabry V J. 2008. Ocean acidification and its potential effects on marine ecosystems. Ann. N. Y. Acad. Sci., 1134 (1): 320–42.CrossRefGoogle Scholar
  19. Heimann S, Schreiber U. 1999. Cyt b-559 (Fd) participating in cyclic electron transport in spinach chloroplasts: evidence for kinetic connection with the cyt b6/f complex. Plant Cell Physiol., 40 (8): 818–824.CrossRefGoogle Scholar
  20. Huertas I E, Lubián L M. 1998. Comparative study of dissolved inorganic carbon utilization and photosynthetic responses in Nannochloris (chlorophyceae) and Nannochloropsis (eustigmatophyceae) species. Can. J. Bot., 76 (6): 1104–1108.Google Scholar
  21. Hutchins D A, Fu F X, Zhang Y, Warner M E, Feng Y, Portune K, Bernhardt P W, Mulholland M R. 2007. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnol. Oceanogr., 52 (4): 1293–1304.CrossRefGoogle Scholar
  22. Ihnken S, Roberts S, Beardall J. 2011. Differential responses of growth and photosynthesis in the marine diatom Chaetoceros muelleri to CO2 and light availability. Phycologia, 50 (2): 182–193.CrossRefGoogle Scholar
  23. Iñiguez C, Carmona R, Lorenzo M R, Niell F X, Wiencke C, Gordillo F J L. 2016. Increased CO2 modifies the carbon balance and the photosynthetic yield of two common arctic brown seaweeds: Desmarestia aculeata and Alaria esculenta. Polar Biol., 39 (11): 1979–1991.CrossRefGoogle Scholar
  24. Iñíguez C, Lorenzo M R, Niell F X, Wiencke C, Gordillo F J, Carmona Fernández R. 2015. Effects of increased CO2 in the carbon budget and the photosynthetic yield of the arctic seaweeds Alaria esculenta and Desmarestia aculeata. Google Scholar
  25. IPCC. 2013. Climate Change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M eds. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. p.1535.Google Scholar
  26. Kranz S A, Dieter S, Richter K U, Rost B. 2009. Carbon acquisition by Trichodesmium: the effect of pCO2 and diurnal changes. Limnol. Oceanogr., 54 (2): 548–559.CrossRefGoogle Scholar
  27. Krause G H, Jahns P. 2004. Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: characterization and function. In: Papageorgiou G C, Govindjee eds. Chlorophyll a Fluorescence. Springer, Netherlands. p.463–495CrossRefGoogle Scholar
  28. Kurihara H, Asai T, Kato S, Ishimatsu A. 2008. Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquat. Biol., 4 (3): 225–233.CrossRefGoogle Scholar
  29. Langer G, Geisen M, Baumann K H, Kläs J, Riebesell U, Thoms S, Young J R. 2006. Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem. Geophys. Geosyst., 7 (9): 535–540.CrossRefGoogle Scholar
  30. Lewis E, Wallace D, Allison L J. 1998. Program developed for CO2 system calculations. Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy.CrossRefGoogle Scholar
  31. Liu Y T, Xu J T, Gao K S. 2012. CO2-driven seawater acidification increases photochemical stress in a green alga. Phycologia, 51 (5): 562–566.CrossRefGoogle Scholar
  32. Liu Z Y, Zhang L J, Cai W J, Wang L, Xue M, Zhang X S. 2014. Removal of dissolved inorganic carbon in the yellow river estuary. Limnol. Oceanogr., 59 (2): 413–426.CrossRefGoogle Scholar
  33. Matsuda Y, Colman B. 1995. Induction of CO2 and bicarbonate transport in the green alga chlorella ellipsoidea (II. Evidence for induction in response to external CO2 concentration). Plant Physiol., 108 (1): 253–260.CrossRefGoogle Scholar
  34. Mercado J M, Javier F, Gordillo L, Niell F X, Figueroa F L. 1999. Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J. Appl. Phycol., 11 (5): 455–461.CrossRefGoogle Scholar
  35. Mercado J M, Niell F X, Figueroa F L. 1997. Regulation of the mechanism for HCO¯3 use by the inorganic carbon level in Porphyra leucosticta Thur. in Le Jolis (Rhodophyta). Planta, 201 (3): 319–325.CrossRefGoogle Scholar
  36. Moroney J V, Husic H D, Tolbert N E. 1985. Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Plant Physiol., 79 (1): 177–183.CrossRefGoogle Scholar
  37. Moroney J V, Somanchi A. 1999. How do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation?. Plant Physiol., 119 (1): 9–16.CrossRefGoogle Scholar
  38. Nimer N A, Iglesias-Rodriguez M D, Merrett M J. 1997. Bicarbonate utilization by marine phytoplankton species. J. Phycol., 33 (4): 625–631.CrossRefGoogle Scholar
  39. Olischläger M, Wiencke C. 2013. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (rhodophyta). J. Exp. Bot., 64 (18): 5587–5597.CrossRefGoogle Scholar
  40. Platt T, Gallegos C L, Harrison W G. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res., 38: 687–701.Google Scholar
  41. Ralph P J, Gademann R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat. Bot., 82 (3): 222–237.CrossRefGoogle Scholar
  42. Reinfelder J R. 2011. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu. Rev. Mar. Sci., 3 (1): 291–315.CrossRefGoogle Scholar
  43. Riebesell U, Schulz K G, Bellerby R G J, Botros M, Fritsche P, Meyerhöfer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zöllner E. 2007. Enhanced biological carbon consumption in a high CO2 ocean. Nature, 450 (7169): 545–548.CrossRefGoogle Scholar
  44. Rost B, Richter K U, Riebesell U, Hansen P J. 2006. Inorganic carbon acquisition in red tide dinoflagellates. Plant Cell Environ., 29 (5): 810–822.CrossRefGoogle Scholar
  45. Rost B, Riebesell U, Burkhardt S, Sültemeyer D. 2003. Carbon acquisition of bloom-forming marine phytoplankton. Limnol. Oceanogr, 48 (1): 55–67.CrossRefGoogle Scholar
  46. Sarker M Y, Bartsch I, Olischläger M, Gutow L, Wiencke C. 2013. Combined effects of CO2, temperature, irradiance and time on the physiological performance of Chondrus crispus (Rhodophyta). Bot. Mar., 56 (1): 63–74.CrossRefGoogle Scholar
  47. Spreitzer R J, Salvucci M E. 2002. RUBISCO: structure, regulatory interactions, and possibilities for a better enzyme. Annu. Rev. Plant Biol., 53 (1): 449–475.CrossRefGoogle Scholar
  48. Torstensson A, Chierici M, WulffA. 2012. The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom navicula directa. Polar Biol., 35 (2): 205–214.CrossRefGoogle Scholar
  49. Trimborn S, Lundholm N, Thoms S, Richter K U, Krock B, Hansen P J, Rost B. 2008. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pHinduced changes in seawater carbonate chemistry. Physiol Plant, 133 (1): 92–105.CrossRefGoogle Scholar
  50. Trimborn S, Wolf-Gladrow D, Richter K U, Rost B. 2009. The effect of pCO2 on carbon acquisition and intracellular assimilation in four marine diatoms. J. Exp. Mar. Biol. Ecol., 376 (1): 26–36.CrossRefGoogle Scholar
  51. Van de Waal D B, John U, Ziveri P, Reichart G J, Hoins M, Sluijs A, Rost B. 2013. Ocean acidification reduces growth and calcification in a marine dinoflagellate. PLoS One, 8 (6): e65987.CrossRefGoogle Scholar
  52. Wellburn A R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol., 144 (3): 307–313.CrossRefGoogle Scholar
  53. Wu Y P, Beardall J, Gao K S. 2015. Physiological responses of a model marine diatom to fast pH changes: special implications of coastal water acidification. PLoS One, 10 (10): e0141163.CrossRefGoogle Scholar
  54. Wu Y, Gao K, Riebesell U. 2010. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences, 7 (9): 2915–2923.CrossRefGoogle Scholar
  55. Xu J T, Gao K S. 2012. Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiol., 160 (4): 1762–1769.CrossRefGoogle Scholar
  56. Yang G Y, Gao K S. 2012. Physiological responses of the marine diatom Thalassiosira pseudonana to increased pCO2 and seawater acidity. Mar. Environ. Res., 79: 142–151.CrossRefGoogle Scholar
  57. Zhang X X, Tang X X, Zhou B, Hu S X, Wang Y. 2015. Effect of enhanced UV-B radiation on photosynthetic characteristics of marine microalgae Dunaliella salina (Chlorophyta, Chlorophyceae). J. Exp. Mar. Biol. Ecol., 469: 27–35.CrossRefGoogle Scholar
  58. Zou D H, Gao K S, Luo H J. 2011. short-and long-term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia fusiformis (Sargassaceae, Phaeophyta) grown at low and high N supplies. J. Phycol., 47 (1): 87–97.CrossRefGoogle Scholar
  59. Zou D H, Gao K S. 2009. Effects of elevated CO2 on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels. Phycologia, 48 (6): 510–517.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Shunxin Hu (胡顺鑫)
    • 1
  • You Wang (王悠)
    • 1
  • Ying Wang (王影)
    • 1
  • Yan Zhao (赵妍)
    • 1
  • Xinxin Zhang (张鑫鑫)
    • 1
  • Yongsheng Zhang (张永生)
    • 1
    • 2
  • Ming Jiang (姜铭)
    • 1
  • Xuexi Tang (唐学玺)
    • 1
  1. 1.College of Marine Life ScienceOcean University of ChinaQingdaoChina
  2. 2.Rongcheng Ocean and Fisheries BureauWeihaiChina

Personalised recommendations