Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 3, pp 842–849 | Cite as

Molecular cytogenetic of the Amoy croaker, Argyrosomus amoyensis (Teleostei, Sciaenidae)

  • Mengxiang Liao (廖梦香)
  • Jiao Zheng (郑娇)
  • Zhiyong Wang (王志勇)
  • Yilei Wang (王艺磊)
  • Jing Zhang (张静)
  • Mingyi Cai (蔡明夷)
Article
  • 44 Downloads

Abstract

The family Sciaenidae is remarkable for its species richness and economic importance. However, the cytogenetic data available in this fish group are still limited, especially those obtained using fluorescence in situ hybridization (FISH). In the present study, the chromosome characteristics of a sciaenid species, Argyrosomus amoyensis, were examined with several cytogenetic methods, including dual-FISH with 18S and 5S rDNA probes, and a self-genomic in situ hybridization procedure (Self-GISH). The karyotype of A. amoyensis comprised 2n=48 acrocentric chromosomes. A single pair of nucleolar organizer regions (NORs) was located at the proximal position of chromosome 1, which was positive for silver nitrate impregnation (AgNO3) staining and denaturation-propidium iodide (DPI) staining but negative for Giemsa staining and 4',6-diamidino-2-phenylindole (DAPI) staining, and was confirmed by FISH with 18S rDNA probes. The 5S rDNA sites were located at the centromeric region of chromosome 3. Telomeric FISH signals were detected at all chromosome ends with different intensities, but internal telomeric sequences (ITSs) were not found. Self-GISH resulted in strong signals distributed at the centromeric regions of all chromosomes. C-banding revealed not only centromeric heterochromatin, but also heterochromatin that located on NORs, in interstitial and distal telomeric regions of specific chromosomes. These results suggest that the karyotype of Amoy croaker was relatively conserved and primitive. By comparison with the reported cytogenetic data of other sciaenids, it can be deduced that although the karyotypic macrostructure and chromosomal localization of 18S rDNA are conserved, the distribution of 5S rDNA varies dynamically among sciaenid species. Thus, the 5S rDNA sites may have different evolutionary dynamics in relation to other chromosomal regions, and have the potential to be effective cytotaxonomic markers in Sciaenidae.

Keyword

Argyrosomus amoyensis fluorescence in situ hybridization genomic DNA rDNA telomere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accioly I V, Molina W F. 2008. Cytogenetic studies in Brazilian marine Sciaenidae and Sparidae fishes (Perciformes). Genet. Mol. Res., 7 (2): 358–370, https://doi.org/10.4238/vol7-2gmr427.CrossRefGoogle Scholar
  2. Aguilar C T, Galetti Jr P M. 1997. Chromosomal studies in South Atlantic serranids (Pisces, Perciformes). Cytobios, 89: 89–105.Google Scholar
  3. Arai R. 2011. Fish Karyotypes: A Check List. Springer, Tokyo, Japan. p.174-175.CrossRefGoogle Scholar
  4. Brum M J I, Galetti Jr P M. 1997. Teleostei ground plan karyotype. J. Comp. Biol., 2: 2–91.Google Scholar
  5. Cai M Y, Liu X D, Chen Z Y, Cai B B, Ke C H. 2013. Characterization of Pacific abalone (Haliotis discus hannai) karyotype by C-banding and fluorescence in situ hybridization with rDNA. J. Fish. China, 37 (7): 1 002–1 008, https://doi.org/10.3724/SP.J.1231.2013.38481. (in Chinese with English abstract)CrossRefGoogle Scholar
  6. Calado L L, Bertollo L A C, CioffiM B, Costa G W, Jacobina U P, Molina W F. 2014. Evolutionary dynamics of rDNA genes on chromosomes of the Eucinostomus fishes: cytotaxonomic and karyoevolutive implications. Genet. Mol. Res., 13 (4): 9 951–9 959, https://doi.org/10.4238/2014.November.27.24.CrossRefGoogle Scholar
  7. Canela A, Vera E, Klatt P, Blasco M A. 2007. High-throughput telomere length quantification by fish and its application to human population studies. Proc. Natl. Acad. Sci. USA., 104 (13): 5 300–5 305, https://doi.org/10.1073/pnas.0609367104.CrossRefGoogle Scholar
  8. Cao K, Zheng J, Wang Z Y, Liu X D, Cai M Y. 2015. Genome size and physical length of chromosomes in Nibea albiflora. South China Fish. Sci., 11 (4): 65–70, https://doi.org/10.3969/j.issn.2095-0780.2015.04.010. (in Chinese with English abstract)Google Scholar
  9. Chao L N, Musick J A. 1977. Life history, feeding habits, and functional morphology of juvenile sciaenid fishes in the York River estuary, Virginia. Fish. Bull., 75 (4): 657–702.Google Scholar
  10. Coen E S, Dover G A. 1983. Unequal exchanges and the coevolution of X and Y rDNA arrays in Drosophila melanogaster. Cell, 33 (3): 849–855, https://doi.org/10.1016/0092-8674(83)90027-2.CrossRefGoogle Scholar
  11. Da Silva M, Matoso D A, Vicari M R, de Almeida M C, Margarido V P, Artoni R F. 2011. Physical mapping of 5S rDNA in two species of knifefishes: Gymnotus pantanal and Gymnotus paraguensis (gymnotiformes). Cytogenet. Genome Res., 134 (4): 303–307, https://doi.org/10.1159/000328998.CrossRefGoogle Scholar
  12. de Mello Affonso P R A, Galetti Jr P M. 2005. Chromosomal diversification of reef fishes from genus Centropyge (perciformes, pomacanthidae). Genetica, 123 (3): 227–233, https://doi.org/10.1007/s10709-004-3214-x.CrossRefGoogle Scholar
  13. Drouin G, de Sá M M. 1995. The concerted evolution of 5S ribosomal genes linked to the repeat units of other Multigene Families. Mol. Biol. Evol., 12 (3): 481–493, https://doi.org/10.1093/oxfordjournals.molbev.a040223.Google Scholar
  14. Feldberg E, Porto J I R, dos Santos E B P, Valentim F C S. 1999. Cytogenetic studies of two freshwater sciaenids of the genus Plagioscion (Perciformes, sciaenidae) from the central Amazon. Genet. Mol. Biol., 22 (3): 351–356, https://doi.org/10.1590/S1415-47571999000300011.CrossRefGoogle Scholar
  15. Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida M C. 1997. Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male. Chromosoma, 106 (1): 44–52, https://doi.org/10.1007/s004120050223.CrossRefGoogle Scholar
  16. Galetti Jr P M, Aguilar C T, Molina W F. 2000. An Overview of Marine Fish Cytogenetics. Springer, Netherlands. p.55-62, https://doi.org/10.1007/978-94-017-2184-4_6.CrossRefGoogle Scholar
  17. Gomes V, Vazzoler A E A D M, Phan V N. 1983a. Estudos cariotípicos de peixes da família Sciaenidae (Teleostei, Perciformes) da região de Cananéia, SP, Brasil. 1. Sobre o cariótipo de Micropogonias furnieri (Desmarest, 1823). Bol. Inst. Oceanogr., 32 (2): 137–142.CrossRefGoogle Scholar
  18. Gomes V, Vazzoler A E A D M, Phan V N. 1983b. Estudos cariotípicos de peixes da família Sciaenidae (Teleostei, Perciformes) da região de Cananéia, SP, Brasil: 2. Sobre o cariótipo de Menticirrhus americanus (Linnaeus, 1758). Bol. Inst. Oceanogr., 32 (2): 187–191.CrossRefGoogle Scholar
  19. Gornung E. 2013. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet. Genome Res., 141: 141–90. https://doi.org/10.1159/000354832.Google Scholar
  20. Howell W M, Black D A. 1980. Controlled silver-staining of nucleolus organizer regions with protective colloidal developer: a 1-step method. Experientia, 36 (8): 1 014–1 015, https://doi.org/10.1007/BF01953855.CrossRefGoogle Scholar
  21. Ijdo J W, Wells R A, Baldini A, Reeders S T. 1991. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res., 19 (17): 4780, https://doi.org/10.1093/nar/19.17.4780.CrossRefGoogle Scholar
  22. Jian L J, Yang Y K, Liu X D, Chen Q K, Wang Z Y. 2013. The cross breeding and genetic analysis of hybrids of Larimichthys crocea (♀) and Nibea miichthioides (♂). J. Fish. China, 37 (6): 801–808, https://doi.org/10.3724/SP.J.1231.2013.38438. (in Chinese with English abstract)CrossRefGoogle Scholar
  23. Junior P M G, Molina W F, Affonso P R A M, Aguilar C T. 2006. Assessing genetic diversity of Brazilian reef fishes by chromosomal and DNA markers. Genetica, 126 (1–2): 161–177, https://doi.org/10.1007/s10709-005-1446-z.CrossRefGoogle Scholar
  24. Levan A, Fredga K, Sandberg A A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas, 52 (2): 201–220, https://doi.org/10.1111/j.1601-5223.1964.tb01953.x.CrossRefGoogle Scholar
  25. Longhurst A R, Pauly D. 1987. Ecology of Tropical Oceans. Academic Press Inc., San Diego. p.407.Google Scholar
  26. Markova M, Vyskot B. 2009. New horizons of genomic in situ hybridization. Cytogenet. Genome Res., 126 (4): 368–375, https://doi.org/10.1159/000275796.CrossRefGoogle Scholar
  27. Martins C, Galetti Jr P M. 1999. Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Res., 7 (5): 363–367, https://doi.org/10.1023/A:1009216030316.CrossRefGoogle Scholar
  28. Meng Q W. 1996. Systematics of Fishes. China Agriculture Press, Beijing, China. p.721-722. (in Chinese).Google Scholar
  29. Nelson J S, Grande T C, Wilson M V H. 2016. Fishes of the World. 5 th edn. John Wiley and Sons Inc., New York. p.498.CrossRefGoogle Scholar
  30. Ocalewicz K. 2013. Telomeres in fishes. Cytogenet. Genome Res., 141(2-3): 114–125, https://doi.org/10.1159/000354278.CrossRefGoogle Scholar
  31. Ojima Y, Kikuno T. 1987. Karyotypes of a Gobiesociform and two Perciform fishes (Teleostei). Proc. Japan Acad. Ser.B, 63 (6): 201–204, https://doi.org/10.2183/pjab.63.201.CrossRefGoogle Scholar
  32. Pereira A, Bedó G, Pereira J. 1988. Estudio cromosomico preliminar de Micropogonias furnieri Desmarest, 1823 (Perciformes, Sciaenidae). Bol. Soc. Zool. Uruguay (2ª epoca), 4: 4–23.Google Scholar
  33. Rab P, Reed K M, de León A P, Phillips R B. 1996. A new method for detecting nucleolus organizer regions in fish chromosomes using denaturation and propidium iodide staining. Biotech. Histochem., 71 (3): 157–162, https://doi.org/10.3109/10520299609117153.CrossRefGoogle Scholar
  34. Reggi R, Périco E, Suninsky M, Camillo J C A. 1986. Estudos citogenéticos em papa-terra, Menticirrhus litoralis (Perciformes, Serranidae). In: Simpósio de Citogenética Evolutiva e Aplicada de Peixes Neotropicais. Botucatu, UNESP. p.57.Google Scholar
  35. Ruiz-Herrera A, Nergadze S G, Santagostino M, Giulotto E. 2008. Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenet. Genome Res., 122 (3–4): 219–228, https://dx.doi.org/10.1159/000167807.CrossRefGoogle Scholar
  36. Sasaki K. 1996. Sciaenid fishes of the Indian Ocean (Teleostei, Perciformes). Mem. Fac. Sci. Kochi. Univ. Ser. D, 16-17: 17–83.Google Scholar
  37. Sasaki K. 2001. Sciaenidae. Croakers (drums). In: Carpenter K E ed. FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific. Vol. 5. Bony Fishes Part 3 (Menidae to Pomacentridae). Rome: FAO. p.2 791–3 380.Google Scholar
  38. Scacchetti P C, Pansonato-Alves J C, Utsunomia R, Oliveira C, Foresti F. 2011. Karyotypic diversity in four species of the genus Gymnotus Linnaeus, 1758 (Teleostei, Gymnotiformes, Gymnotidae): physical mapping of ribosomal genes and telomeric sequences. Comp Cytogen., 5 (3): 223–235, https://doi.org/10.3897/CompCytogen.v5i3.1375.CrossRefGoogle Scholar
  39. She C W, Liu J Y, Diao Y, Hu Z L, Song Y C. 2007. The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization. J. Genet. Genom., 34 (5): 437–448, https://doi.org/10.1016/S1673-8527(07)60048-4.CrossRefGoogle Scholar
  40. Slijepcevic P. 1998. Telomeres and mechanisms of robertsonian fusion. Chromosoma, 107 (2): 136–140, https://doi.org/10.1007/s004120050289.CrossRefGoogle Scholar
  41. Sumner A T. 1972. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res., 75 (1): 304–306, https://doi.org/10.1016/0014-4827(72)90558-7.CrossRefGoogle Scholar
  42. Symonová R, Majtánová Z, Sember A, Staaks G B, Bohlen J, Freyhof J, Rábová M, Ráb P. 2013. Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol. Biol., 13 (1): 42, https://doi.org/10.1186/1471-2148-13-42.CrossRefGoogle Scholar
  43. Wang D X, Wang J, Guo F, Liang J R, Qin Y X. 2002. Study on the karyotype in Nibea miichtheoides. Marine Sci,. 26 (11): 68–70, https://doi.org/10.3969/j.issn.1000-3096.2002.11.019. (in Chinese with English abstract)Google Scholar
  44. Wang X Y. 2012. Chromosome karyotypic analyses of some cultured fishes of the East China Sea. Zhejiang Ocean Univ. Press, Zhejiang, China. p.1-65. (in Chinese).Google Scholar
  45. Zheng J, Cao K, Yang A R, Zhang J, Wang Z Y, Cai M Y. 2016. Chromosome mapping using genomic DNA and repetitive DNA sequences as probes for somatic chromosome identification in Nibea albiflora. J. Fish. China, 40 (8): 1 156–1 162, https://doi.org/10.11964/jfc.20151110166. (in Chinese with English abstract)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mengxiang Liao (廖梦香)
    • 1
  • Jiao Zheng (郑娇)
    • 1
  • Zhiyong Wang (王志勇)
    • 1
  • Yilei Wang (王艺磊)
    • 1
  • Jing Zhang (张静)
    • 1
  • Mingyi Cai (蔡明夷)
    • 1
  1. 1.Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries CollegeJimei UniversityXiamenChina

Personalised recommendations