Journal of Oceanology and Limnology

, Volume 36, Issue 2, pp 405–413 | Cite as

Impact of seawater carbonate variables on post-larval bivalve calcification

  • Jiaqi Li (李加琦)
  • Yuze Mao (毛玉泽)
  • Zengjie Jiang (蒋增杰)
  • Jihong Zhang (张继红)
  • Dapeng Bian (卞大鹏)
  • Jianguang Fang (方建光)


Several studies have demonstrated that shellfish calcification rate has been impacted by ocean acidification. However, the carbonate system variables responsible for regulating calcification rate are controversial. To distinguish the key variables, we manipulated a seawater carbonate system by regulating seawater pH and dissolved inorganic carbon (DIC). Calcification rates of juvenile blue mussel (Mytilus edulis) and Zhikong scallop (Chlamys farreri) were measured in different carbonate systems. Our results demonstrated that neither [HCOˉ3], DIC, or pH ([H+]) were determining factors for the shellfish calcification rate of blue mussel or Zhikong scallop. However, a significant correlation was detected between calcification rate and DIC/[H+] and [CO3] in both species.


ocean acidification calcification shellfish carbonate system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Mr. James Yang Xie from Hong Kong Baptist University (HKBU) for editing our manuscript.


  1. Anthony K R N, Kline D I, Diaz-Pulido G, Dove S, Hoegh-Guldberg O. 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America, 105 (45): 17442–17446.CrossRefGoogle Scholar
  2. Byrne M, Ho M, Wong E, Soars N A, Selvakumaraswamy P, Shepard-Brennand H, Dworjanyn S A, Davis A R. 2011. Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Proceedings of the Royal Society B: Biological Sciences, 278 (1716): 2376–2383.CrossRefGoogle Scholar
  3. Chopin T, Cooper J A, Reid G, Cross S, Moore C. 2012. Openwater integrated multi-trophic aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Reviews in Aquaculture, 4 (4): 209–220.CrossRefGoogle Scholar
  4. Clements J C, Chopin T. 2016. Ocean acidification and marine aquaculture in North America: potential impacts and mitigation strategies. Reviews in Aquaculture, 56 (3): 182–196Google Scholar
  5. Crim R N, Sunday J M, Harley C D G. 2011. Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana). Journal of Experimental Marine Biology and Ecology, 400 (1-2): 272–277.CrossRefGoogle Scholar
  6. de Putron S J, McCorkle D C, Cohen A L, Dillon A B. 2011. The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals. Coral Reefs, 30(2): 321–328.CrossRefGoogle Scholar
  7. Frankignoulle M, Pichon M, Gattuso J P. 1995. Aquatic calcification as a source of carbon dioxide. In: Beran M A ed. Carbon Sequestration in the Biosphere: Processes and Prospects. Springer, Berlin Heidelberg. p.265–271.CrossRefGoogle Scholar
  8. Gattuso J P, Frankignoulle M, Bourge I, Romaine S, Buddemeier R W. 1998. Effect of calcium carbonate saturation of seawater on coral calcification. Global and Planetary Change, 18 (1-2): 37–46.CrossRefGoogle Scholar
  9. Gazeau F, Gattuso J P, Dawber C, Pronker A E, Peene F, Peene J, Heip C H R, Middelburg J J. 2010. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences, 7 (7): 2051–2060.CrossRefGoogle Scholar
  10. Gazeau F, Quiblier C, Jansen J M, Gattuso J P, Middelburg J J, Heip C H R. 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters, 34 (7): L07603.CrossRefGoogle Scholar
  11. IPCC. 2007. Climate Change 2007: The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK and New York, USA.Google Scholar
  12. Jokiel P L. 2013. Coral reef calcification: carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification. Proceedings of the Royal Society B: Biological Sciences, 280 (1764): 20130031.CrossRefGoogle Scholar
  13. Jury C P, Whitehead R F, Szmant A M. 2010. Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (= Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Global Change Biology, 16 (5): 1632–1644.CrossRefGoogle Scholar
  14. Kelly M W, Padilla-Gamiño J L, Hofmann G E. 2016. High p CO2 affects body size, but not gene expression in larvae of the California mussel (Mytilus californianus). ICES Journal of Marine Science, 73 (3): 962–969.CrossRefGoogle Scholar
  15. Kleypas J A, Buddemeier R W, Archer D, Gattuso J P, Langdon C, Opdyke B N. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science, 284 (5411): 118–120.CrossRefGoogle Scholar
  16. Kuffner I B, Andersson A J, Jokiel P L, Rodgers K S, Mackenzie F T. 2008. Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geoscience, 1 (2): 114–117.CrossRefGoogle Scholar
  17. Kurihara H, Asai T, Kato S, Ishimatsu A. 2009. Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquatic Biology, 4 (3): 225–233.Google Scholar
  18. Kurihara H, Kato S, Ishimatsu A. 2007. Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquatic Biology, 1 (1): 91–98.CrossRefGoogle Scholar
  19. Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson M J. 2000. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochemical Cycles, 14 (2): 639–654.CrossRefGoogle Scholar
  20. Li J Q, Jiang Z J, Zhang J H, Qiu J W, Du M R, Bian D P, Fang J G. 2013. Detrimental effects of reduced seawater pH on the early development of the Pacific abalone. Marine Pollution Bulletin, 74 (1): 320–324.CrossRefGoogle Scholar
  21. Maier C, Hegeman J, Weinbauer M G, Gattuso J P. 2009. Calcification of the cold-water coral Lophelia pertusa, under ambient and reduced pH. Biogeosciences, 6 (8): 1671–1680.CrossRefGoogle Scholar
  22. Maier C, Popp P, Sollfrank N, Weinbauer M G, Wild C, Gattuso J P. 2016. Effects of elevated p CO2 and feeding on net calcification and energy budget of the Mediterranean cold-water coral Madrepora oculata. The Journal of Experimental Biology, 219 (20): 3208–3217.CrossRefGoogle Scholar
  23. Mao Y Z, Yang H S, Zhou Y, Ye N H, Fang J G. 2009. Potential of the seaweed Gracilaria lemaneiformis for integrated multi-trophic aquaculture with scallop Chlamys farreri in North China. Journal of Applied Phycology, 21 (6): 649–656.CrossRefGoogle Scholar
  24. Marubini F, Ferrier-Pagès C, Furla P, Allemand D. 2008. Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism. Coral Reefs, 27 (3): 491–499.CrossRefGoogle Scholar
  25. Miller A W, Reynolds A C, Sobrino C, Riedel G F. 2009. Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries. PLoS One, 4 (5): e5661.CrossRefGoogle Scholar
  26. Orr J C, Fabry V J, Aumont O, Bopp L, Doney S C, Feely R A, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key R M, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar R G, Plattner G K, Rodgers K B, Sabine C L, Sarmiento J L, Schlitzer R, Slater R D, Totterdell I J, Weirig M F, Yamanaka Y, Yool A. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437 (7059): 681–686.CrossRefGoogle Scholar
  27. PandolfiJ M, Connolly S R, Marshall D J, Cohen A L. 2011. Projecting coral reef futures under global warming and ocean acidification. Science, 333 (6041): 418–422.CrossRefGoogle Scholar
  28. Parker L M, Ross P M, O’Connor W A. 2010. Comparing the effect of elevated p CO2 and temperature on the fertilization and early development of two species of oysters. Marine Biology, 157 (11): 2435–2452.CrossRefGoogle Scholar
  29. Pfister C A, Roy K, Wootton J T, McCoy S J, Paine R T, Suchanek T H, Sanford E. 2016. Historical baselines and the future of shell calcification for a foundation species in a changing ocean. Proceedings of the Royal Society B: Biological Sciences, 283 (1832): 20160392.CrossRefGoogle Scholar
  30. Pierrot D, Lewis E, Wallace D W R. 2006. MS Excel program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN.Google Scholar
  31. Ries J B, Ghazaleh M N, Connolly B, Westfield I, Castillo K D. 2016. Impacts of seawater saturation state (Ω A =0.4-4.6) and temperature (10, 25°C) on the dissolution kinetics of whole-shell biogenic carbonates. Geochimica et Cosmochimica Acta, 192: 318–337.CrossRefGoogle Scholar
  32. Semesi I S, Beer S, Björk M. 2009a. Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Marine Ecology Progress Series, 382: 41–47.CrossRefGoogle Scholar
  33. Semesi I S, Kangwe J, Björk M. 2009b. Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta). Estuarine, Coastal and Shelf Science, 84 (3): 337–341.CrossRefGoogle Scholar
  34. Silverman J, Lazar B, Erez J. 2007. Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. Journal of Geophysical Research: Oceans, 112 (C5): C05004.CrossRefGoogle Scholar
  35. Talmage S C, Gobler C J. 2009. The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica). Limnology and Oceanography, 54 (6): 2072–2080.CrossRefGoogle Scholar
  36. Talmage S C, Gobler C J. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences of the United States of America, 107 (40): 17246–17251.CrossRefGoogle Scholar
  37. Tang Q S, Zhang J H, Fang J G. 2011. Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystems. Marine Ecology Progress Series, 424: 97–105.CrossRefGoogle Scholar
  38. Thomsen J, Haynert K, Wegner K M, Melzner F. 2015. Impact of seawater carbonate chemistry on the calcification of marine bivalves. Biogeosciences, 12 (14): 4209–4220.CrossRefGoogle Scholar
  39. Thomsen J, Melzner F. 2010. Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Marine Biology, 157 (12): 2667–2676.CrossRefGoogle Scholar
  40. Waldbusser G G, Gray M W, Hales B, Langdon C J, Haley B A, Gimenez I, Smith S R, Brunner E L, Hutchinson G. 2016. Slow shell building, a possible trait for resistance to the effects of acute ocean acidification. Limnology and Oceanography, 61 (6): 1969–1983.CrossRefGoogle Scholar
  41. Waldbusser G G, Hales B, Langdon C J, Haley B A, Schrader P, Brunner E L, Gray M W, Miller C A, Gimenez I. 2015. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Climate Chang, 5 (3): 273–280.CrossRefGoogle Scholar
  42. Wang W M, Liu G X, Zhang T W, Chen H J, Tang L, Mao X W. 2016. Effects of elevated seawater pCO2 on early development of scallop Argopecten irradias (Lamarck, 1819). Journal of Ocean University of China, 15 (6): 1073–1079.CrossRefGoogle Scholar
  43. White M M, McCorkle D C, Mullineaux L S, Cohen A L. 2013. Early exposure of bay scallops (Argopecten irradians) to high CO2 causes a decrease in larval shell growth. PLoS One, 8 (4): e61065.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jiaqi Li (李加琦)
    • 1
    • 2
  • Yuze Mao (毛玉泽)
    • 1
    • 2
  • Zengjie Jiang (蒋增杰)
    • 1
    • 3
  • Jihong Zhang (张继红)
    • 1
    • 3
  • Dapeng Bian (卞大鹏)
    • 4
  • Jianguang Fang (方建光)
    • 1
    • 3
  1. 1.Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
  2. 2.Laboratory of Marine Ecology and Environmental ScienceQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Function Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.National Engineering and Research Center of Marine ShellfishWeihaiChina

Personalised recommendations