Intestinal microbiota of healthy and unhealthy Atlantic salmon Salmo salar L. in a recirculating aquaculture system
- 245 Downloads
- 7 Citations
Abstract
The present study sampled the intestinal content of healthy and unhealthy Atlantic salmon (Salmo salar L.), the ambient water of unhealthy fish, and the biofilter material in the recirculating aquaculture system (RAS) to understand differences in the intestinal microbiota. The V4–V5 regions of the prokaryotic 16S rRNA genes in the samples were analyzed by MiSeq high-throughput sequencing. The fish were adults with no differences in body length or weight. Representative members of the intestinal microbiota were identified. The intestinal microbiota of the healthy fish included Proteobacteria (44.33%), Actinobacteria (17.89%), Bacteroidetes (15.25%), and Firmicutes (9.11%), among which the families Micrococcaceae and Oxalobacteraceae and genera Sphingomonas, Streptomyces, Pedobacter, Janthinobacterium, Burkholderia, and Balneimonas were most abundant. Proteobacteria (70.46%), Bacteroidetes (7.59%), and Firmicutes (7.55%) dominated the microbiota of unhealthy fish, and Chloroflexi (2.71%), and Aliivibrio and Vibrio as well as genera in the family Aeromonadaceae were most strongly represented. Overall, the intestinal hindgut microbiota differed between healthy and unhealthy fish. This study offers a useful tool for monitoring the health status of fish and for screening the utility of probiotics by studying the intestinal microbiota.
Keyword
intestinal microbiota health status Atlantic salmon (Salmo salar L.) recirculating aquaculture system high-throughput pyrosequencingPreview
Unable to display preview. Download preview PDF.
References
- Backhed F, Ding H, Wang T, Hooper L V, Koh G Y, Nagy A, Semenkovich C F, Gordon J I. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U. S. A., 101 (44): 15718–15723.CrossRefGoogle Scholar
- Bakke-McKellep A M, Penn M H, Salas P M, Refstie S, Sperstad S, Landsverk T, Ringø E, Krogdahl Å. 2007. Effects of dietary soyabean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). Brit. J. Nutr., 97 (4): 699–713.CrossRefGoogle Scholar
- Balcázar J L, Vendrell D, de Blas I, Ruiz-Zarzuela I, Muzquiz J L, Girones O. 2008. Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture, 278 (1-4): 188–191.CrossRefGoogle Scholar
- Bik E M, Eckburg P B, Gill S R, Nelson K E, Purdom E A, Francois F, Perez-Perez G, Blaser M J, Relman D A. 2006. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl. Acad. Sci. U. S. A., 103 (3): 732–737.CrossRefGoogle Scholar
- Blumberg R, Powrie F. 2012. Microbiota, disease, and back to health: a metastable journey. Sci. Transl. Med., 4 (137): 137rv7.CrossRefGoogle Scholar
- Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, McDonald B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods., 7 (5): 335–336.CrossRefGoogle Scholar
- Claesson M J, Jeffery I B, Conde S, Power S E, O’Connor E M, Cusack S, Harris H M B, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald G F, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi J R, Fitzgerald A P, Shanahan F, Hill C, Ross R P, O’Toole P W. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature, 488 (7410): 178–184.CrossRefGoogle Scholar
- Cole J R. 2003. The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic. Acids. Res., 31 (1): 442–443.CrossRefGoogle Scholar
- Das S, Ward L R, Burke C. 2010. Screening of marine Streptomyces spp. for potential use as probiotics in aquaculture. Aquaculture, 305 (1-4): 32–41.CrossRefGoogle Scholar
- Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P. 2007. Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends. Biotechnol., 25 (10): 472–479.CrossRefGoogle Scholar
- Desai A R, Links M G, Collins S A, Mansfield G S, Drew M D, Van Kessel A G, Hill J E. 2012. Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquaculture, 350-353: 134–142.CrossRefGoogle Scholar
- DeSantis T Z, Hugenholtz P, Larsen N, Rojas M, Brodie E L, Keller K, Huber T, Dalevi D, Hu P, Andersen G L. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol., 72 (7): 5069–5072.CrossRefGoogle Scholar
- Dharmaraj S. 2011. Antagonistic potential of marine actinobacteria against fish and shellfish pathogens. Turk. J. Bio l., 35 (3): 303–311.Google Scholar
- Donskey C J. 2004. The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin. Infect. Dis., 39 (2): 219–226.CrossRefGoogle Scholar
- Du Y S, Yi M M, Xiao P, Meng L J, Li X, Sun G X, Liu Y. 2015. The impact of Aeromonas salmonicida infection on innate immune parameters of Atlantic salmon (Salmo salar L). Fish. Shellfish. Immun., 44 (1): 307–315.CrossRefGoogle Scholar
- Edgar R C, Haas B J, Clemente J C, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27 (16): 2194–2200.CrossRefGoogle Scholar
- Ewart K V, Belanger J C, Williams J, Karakach T, Penny S, Tsoi S C M, Richards R C, Douglas S E. 2005. Identification of genes differentially expressed in Atlantic salmon (Salmo salar) in response to infection by Aeromonas salmonicida using cDNA microarray technology. Dev. Comp. Immunol., 29 (4): 333–347.CrossRefGoogle Scholar
- Gill N, Wlodarska M, Finlay B. 2011. Roadblocks in the gut: barriers to enteric infection. Cell. Microbiol., 13 (5): 660–669.CrossRefGoogle Scholar
- Gill S R, Pop M, DeBoy R T, Eckburg P B, Turnbaugh P J, Samuel B S, Gordon J I, Relman D A, Fraser-Liggett C M, Nelson K E. 2006. Metagenomic analysis of the human distal gut microbiome. Science, 312 (5778): 1355–1359.CrossRefGoogle Scholar
- Giongo A, Gano K A, Crabb D B, Mukherjee N, Novelo L L, Casella G, Drew J C, Ilonen J, Knip M, Hyöty H, Veijola R, Simell T, Simell O, Neu J, Wasserfall C H, Schatz D, Atkinson M A, Triplett E W. 2011. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J, 5 (1): 82–91.CrossRefGoogle Scholar
- Gómez G D, Balcázar J L. 2008. A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunol. Med. Microbiol., 52 (2): 145–154.CrossRefGoogle Scholar
- Goodfellow M, Williams S T. 1983. Ecology of actinomycetes. Annu. Rev. Microbiol., 37: 189–216.CrossRefGoogle Scholar
- Gustafson C E, Thomas C J, Trust T J. 1992. Detection of Aeromonas salmonicida from fish by using polymerase chain reaction amplification of the virulence surface array protein gene. Appl. Environ. Microb iol., 58 (12): 3816–3825.Google Scholar
- Han S F, Liu Y C, Zhou Z G, He S X, Cao Y N, Shi P, Yao B, Ring Ö E. 2010. Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences. Aquac. Res., 42 (1): 47–56.CrossRefGoogle Scholar
- Hansen G H, Olafsen J A. 1999. Bacterial interactions in early life stages of marine cold water fish. Microb. Ecol., 38 (1): 1–26.CrossRefGoogle Scholar
- Hooper L V, Littman D R, Macpherson A J. 2012. Interactions between the microbiota and the immune system. Science, 336 (6086): 1268–1273.CrossRefGoogle Scholar
- Hughes J B, Hellmann J J, Ricketts T H, Bohannan B J M. 2001. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microb iol., 67 (10): 4399–4406.CrossRefGoogle Scholar
- Janda J M, Abbott S L. 2010. The genus aeromonas: taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev., 23 (1): 35–73.CrossRefGoogle Scholar
- Kim D H, Brunt J, Austin B. 2007. Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). J. Appl. Microbiol., 102 (6): 1654–1664.CrossRefGoogle Scholar
- Koskinen R, Ali-Vehmas T, Kämpfer P, Laurikkala M, Tsitko I, Kostyal E, Atroshi F, Salkinoja-Salonen M. 2000. Characterization of Sphingomonas isolates from Finnish and Swedish drinking water distribution systems. J. Appl. Microbiol., 89 (4): 687–696.CrossRefGoogle Scholar
- Levine J M, D'Antonio C M. 1999. Elton revisited: a review of evidence linking diversity and invasibility. Oikos, 87 (1): 15–26.CrossRefGoogle Scholar
- Li X M, Yu Y H, Feng W S, Yan Q Y, Gong Y C. 2012. Host species as a strong determinant of the intestinal microbiota of fish larvae. J. Microbiol., 50 (1): 29–37.CrossRefGoogle Scholar
- Li X M, Zhu Y J, Yan Q Y, Ringø E, Yang D G. 2014. Do the intestinal microbiotas differ between paddlefish (Polyodon spathala) and bighead carp (Aristichthys nobilis) reared in the same pond?. J. Appl. Microbiol., 117 (5): 1245–1252.CrossRefGoogle Scholar
- Llewellyn M S, McGinnity P, Dionne M, Letourneau J, Thonier F, Carvalho G R, Creer S, Derome N. 2015. The biogeography of the atlantic salmon (Salmo salar) gut microbiome. ISME J., 10 (5): 1280–1284.CrossRefGoogle Scholar
- Manichanh C, Borruel N, Casellas F, Guarner F. 2012. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol., 9 (10): 599–608.CrossRefGoogle Scholar
- Navarrete P, Magne F, Mardones P, Riveros M, Opazo R, Suau A, Pochart P, Romero J. 2010. Molecular analysis of intestinal microbiota of rainbow trout (Oncorhynchus mykiss). FEMS Microbiol. Ecol., 71 (1): 148–156.CrossRefGoogle Scholar
- Nelson A M, Walk S T, Taube S, Taniuchi M, Houpt E R, Wobus C E, Young V B. 2012. Disruption of the human gut microbiota following Norovirus infection. PLoS One, 7 (10): e48224.CrossRefGoogle Scholar
- Ni J J, Yan Q Y, Yu Y H, Zhang T L. 2014. Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiol. Ecol., 87 (3): 704–714.CrossRefGoogle Scholar
- Ni J J, Yu Y H, Zhang T L, Gao L. 2012. Comparison of intestinal bacterial communities in grass carp, Ctenopharyngodon idellus, from two different habitats. Chin. J. Oceanol. Limn ol., 30 (5): 757–765.CrossRefGoogle Scholar
- Nicholson J K, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. 2012. Host-gut microbiota metabolic interactions. Science, 336 (6086): 1262–1267.CrossRefGoogle Scholar
- O'Hara A M, Shanahan F. 2006. The gut flora as a forgotten organ. EMBO Rep., 7 (7): 688–693.CrossRefGoogle Scholar
- Penn K, Jenkins C, Nett M, Udwary D W, Gontang E A, McGlinchey R P, Foster B, Lapidus A, Podell S, Allen E E, Moore B S, Jensen P R. 2009. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME J., 3 (10): 1193–1203.CrossRefGoogle Scholar
- Peter H, Beier S, Bertilsson S, Lindström E S, Langenheder S, Tranvik L J. 2011. Function-specific response to depletion of microbial diversity. ISME J., 5 (2): 351–361.CrossRefGoogle Scholar
- Rawls J F, Samuel B S, Gordon J I. 2004. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. U. S. A., 101 (13): 4596–4601.CrossRefGoogle Scholar
- Ray A K, Ghosh K, Ringø E. 2012. Enzyme-producing bacteria isolated from fish gut: a review. Aquacult. Nutr., 18 (5): 465–492.CrossRefGoogle Scholar
- Reveco F E, Øverland M, Romarheim O H, Mydland L T. 2014. Intestinal bacterial community structure differs between healthy and inflamed intestines in Atlantic salmon (Salmo salar L.). Aquaculture, 420-421: 262–269.CrossRefGoogle Scholar
- Ringø E, Birkbeck T H. 1999. Intestinal microflora of fish larvae and fry. Aquac. Res., 30 (2): 73–93.CrossRefGoogle Scholar
- Romero J, Navarrete P. 2006. 16S rDNA-based analysis of dominant bacterial populations associated with early life stages of coho salmon (Oncorhynchus kisutch). Microb. Ecol., 51 (4): 422–430.CrossRefGoogle Scholar
- Round J L, Mazmanian S K. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol., 9 (5): 313–323.CrossRefGoogle Scholar
- Shin N R, Whon T W, Bae J W. 2015. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol., 33 (9): 496–503.CrossRefGoogle Scholar
- Sommer F, Bäckhed F. 2013. The gut microbiota—masters of host development and physiology. Nat. Rev. Microbiol., 11 (4): 227–238.CrossRefGoogle Scholar
- Sullam K E, Essinger S D, Lozupone C A, O'Connor M P, Rosen G L, Knight R, Kilham S, Russell J A. 2012. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol. Ecol., 21 (13): 3363–3378.CrossRefGoogle Scholar
- Velmurugan S, John S T, Nagaraj D S, Ashine T A, Kumaran S, Pugazhvendan S. 2015. Isolation of actinomycetes from shrimp culture pond and antagonistic to pathogenic Vibrio spp. and WSSV. Int. J. Curr. Microbiol. App. Sci., 4 (7): 82–92.Google Scholar
- Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. R., 64 (4): 655–671.CrossRefGoogle Scholar
- Wang L M, Zhao B, Li F S, Xu K, Ma C Q, Tao F, Li Q G, Xu P. 2011. Highly efficient production of D-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Appl. Microbiol. Biot., 89 (4): 1009–1017.CrossRefGoogle Scholar
- Wang T T, Cai G X, Qiu Y P, Fei N, Zhang M H, Pang X Y, Jia W, Cai S J, Zhao L P. 2012. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J., 6 (2): 320–329.CrossRefGoogle Scholar
- Willing B P, Russell S L, Finlay B. 2011. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol., 9 (4): 233–243.CrossRefGoogle Scholar
- Wolfensohn S, Lloyd M. 2008. Handbook of Laboratory Animal Management and Welfare. 3 rd edn. John Wiley & Sons, United Kingdom.Google Scholar
- Wu S G, Wang G T, Angert E R, Wang W W, Li W X, Zou H. 2012. Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One, 7 (2): e30440.CrossRefGoogle Scholar
- Yan Q Y, van der Gast C J, Yu Y H. 2012. Bacterial community assembly and turnover within the intestines of developing zebrafish. PLoS One, 7 (1): e30603.CrossRefGoogle Scholar
- Zheng Y F, Yu M, Liu Y, Su Y, Xu T, Yu M C, Zhang X H. 2016. Comparison of cultivable bacterial communities associated with Pacific white shrimp (Litopenaeus vannamei) larvae at different health statuses and growth stages. Aquaculture, 451: 163–169.CrossRefGoogle Scholar