A comparison of Argo nominal surface and near-surface temperature for validation of AMSR-E SST

  • Zenghong Liu (刘增宏)
  • Xingrong Chen (陈幸荣)
  • Chaohui Sun (孙朝辉)
  • Xiaofen Wu (吴晓芬)
  • Shaolei Lu (卢少磊)


Satellite SST (sea surface temperature) from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) is compared with in situ temperature observations from Argo profiling floats over the global oceans to evaluate the advantages of Argo NST (near-surface temperature: water temperature less than 1 m from the surface). By comparing Argo nominal surface temperature (~5 m) with its NST, a diurnal cycle caused by daytime warming and nighttime cooling was found, along with a maximum warming of 0.08±0.36°C during 14:00–15:00 local time. Further comparisons between Argo 5-m temperature/Argo NST and AMSR-E SST retrievals related to wind speed, columnar water vapor, and columnar cloud water indicate warming biases at low wind speed (<5 m/s) and columnar water vapor >28 mm during daytime. The warming tendency is more remarkable for AMSR-E SST/Argo 5-m temperature compared with AMSR-E SST/Argo NST, owing to the effect of diurnal warming. This effect of diurnal warming events should be excluded before validation for microwave SST retrievals. Both AMSR-E nighttime SST/Argo 5-m temperature and nighttime SST/Argo NST show generally good agreement, independent of wind speed and columnar water vapor. From our analysis, Argo NST data demonstrated their advantages for validation of satellite-retrieved SST.


Argo near-surface temperature (NST) Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature (SST) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The Argo near-surface temperature data were collected and made freely available by the National Oceanography Centre. AMSR-E data were produced by Remote Sensing Systems and sponsored by the NASA Earth Science REASoN DISCOVER Project and AMSR-E Science Team. Data are available at


  1. Bhat G S, Veechi G A, Gadgil S. 2004. Sea surface temperature of the Bay of Bengal derived from the TRMM Microwave Imager. J. Atmos. Ocean. Tech., 21 (8): 283–1290.CrossRefGoogle Scholar
  2. Brown O B, Brown J W, Evans R H. 1985. Calibration of advanced very high resolution radiometer infrared observations. J. Geophys. Res., 90 (6): 1667–11677.Google Scholar
  3. Castro S L, Wick G A, Jackson D L, Emery W J. 2008. Error characterization of infrared and microwave satellite sea surface temperature products for merging and analysis. J. Geophys. Res., 113 (C3): C03010, Scholar
  4. Chen D K, Cane M A. 2008. El Niño prediction and predictability. J. Comput. Phys., 227 (7): 625–3640.CrossRefGoogle Scholar
  5. Dong S F, Gille S T, Sprintall J et al. 2006. Validation of the advanced microwave scanning radiometer for the earth observing system (AMSR-E) sea surface temperature in the Southern Ocean. J. Geophys. Res., 111 (C4): C04002, Scholar
  6. Donlon C J, GHRSST-PP Science Team. 2005. The GHRSSTPP product user manual, GDS-v1.5 report. International GHRSST-PP Project Office, Exeter, UK.Google Scholar
  7. Donlon C J, Minnett P J, Gentemann C, Nightingale T J, Barton I J, Ward B, Murray M J. 2002. Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Clim., 15 (4): 53–369.CrossRefGoogle Scholar
  8. Emery W J, Brandt P, Funk A, Böning C. 2006. A comparison of sea surface temperatures from microwave remote sensing of the Labrador Sea with in situ measurements and model simulations. J. Geophys. Res., 111 (C12): C12013, Scholar
  9. Emery W J, Yu Y Y, Wick G A, Schluessel P, Reynolds R W. 1994. Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation. J. Geophys. Res., 99 (C3): 5219–5236.CrossRefGoogle Scholar
  10. Fairall C W, Bradley E F, Rogers D P, Edson J B, Young G S. 1996. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res., 101 (C2): 3747–3764.CrossRefGoogle Scholar
  11. Flament P, Firing J, Sawyer M, Trefois C. 1994. Amplitude and horizontal structure of a large diurnal sea surface warming event during the Coastal Ocean Dynamics Experiment. J. Phys. Ocean ogr., 24 (1): 24–139.Google Scholar
  12. Gentemann C L, Donlon C J, Stuart-Menteth A, Wentz F J. 2003. Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett., 30 (3): 1140, Scholar
  13. Gentemann C L, Minnett P J, Le Borgne P, Merchant C J. 2008. Multi-satellite measurements of large diurnal warming events. Geophys. Res. Lett., 35 (22): L22602, Scholar
  14. Gentemann C L, Minnett P J, Ward B. 2009. Profiles of ocean surface heating (POSH): a new model of upper ocean diurnal warming. J. Geophys. Res., 114 (C7): C07017, Scholar
  15. Gentemann C L, Minnett P J. 2008. Radiometric measurements of ocean surface thermal variability. J. Geophys. Res., 113 (C8): C08017, Scholar
  16. Gentemann C L, Wentz F J, Mears C A, Smith D K. 2004. In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. J. Geophys. Res., 109 (C4): C04021, Scholar
  17. Gentemann C L. 2014. Three way validation of MODIS and AMSR-E sea surface temperatures. J. Geophys. Res., 119 (4): 583–2598, Scholar
  18. Gille S T. 2012. Diurnal variability of upper ocean temperatures from microwave satellite measurements and Argo profiles. J. Geophys. Res., 117 (C11): C11027, Scholar
  19. Gohil B S, Mathur A K, Pandey P C. 1994. An algorithm for sea surface temperature estimation from ERS-1 ATSR using moisture dependent coefficients: a simulation study. Int. J. Remote Sens., 15 (5): 161–1167.CrossRefGoogle Scholar
  20. Kawai Y, Wada A. 2007. Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: a review. J. Oceanogr., 63 (5): 21–744.CrossRefGoogle Scholar
  21. Larson N L, Janzen C D, Murphy D J. 2008. STS: an instrument for extending ARGO temperature and salinity measurements through the sea surface. In: Poster Presented at the 2008 Ocean Sciences Meeting. Orlando, Florida.Google Scholar
  22. McClain E P. 1989. Global sea surface temperatures and cloud clearing for aerosol optical depth estimates. Int. J. Remote Sens., 10(4): 763–769.CrossRefGoogle Scholar
  23. McPhaden M J. 1999. Genesis and evolution of the 1997-98 El Niño. Sci ence, 283 (5404): 50–954, Scholar
  24. Merchant C J, Filipiak M J, Le Borgne P, Roquet H, Autret E, Piollé J F, Lavender S. 2008. Diurnal warm-layer events in the western mediterranean and european shelf seas. Geophys. Res. Lett., 35 (4): L04601, 1029/2007GL033071.CrossRefGoogle Scholar
  25. Minnett P J. 2003. Radiometric measurements of the seasurface skin temperature: the competing roles of the diurnal thermocline and the cool skin. Int. J. Remote Sens., 24 (24): 033–5047.CrossRefGoogle Scholar
  26. Muraleedharan P M, Pankajakshan T, Harikrishnan M. 2004. Validation of multi-channel scanning microwave radiometer on-board Oceansat-I. Curr. Sci., 87 (3): 70–376.Google Scholar
  27. Pandey P C, Kniffen S. 1991. Linear retrieval, validation and mapping of the sea surface temperature over western midlatitude North Pacific using Seasat SMMR data. Int. J. Remote Sens., 12 (12): 493–2511.CrossRefGoogle Scholar
  28. Parekh A, Sharma R, Sarkar A. 2007. A comparative assessment of surface wind speed and sea surface temperature over the Indian Ocean by TMI, MSMR, and ERA-40. J. Atmos. Ocean. Tech., 24 (6): 131–1142.CrossRefGoogle Scholar
  29. Price J F, Weller R A, Pinkel R. 1986. Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91 (C7): 8411–8427.CrossRefGoogle Scholar
  30. Soloviev A, Lukas R. 1997. Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool. Deep Sea Res. Part I, 44 (6): 055–1076.CrossRefGoogle Scholar
  31. Stramma L, Cornillon P, Weller R A, Price J F, Briscoe M G. 1986. Large diurnal sea surface temperature variability: satellite and in situ measurements. J. Phys. Oceanogr., 16 (5): 27–837.CrossRefGoogle Scholar
  32. Suarez M J, Schopf P S. 1988. A delayed action oscillator for ENSO. J. Atmos. Sci., 45 (21): 283–3287.CrossRefGoogle Scholar
  33. Udaya Bhaskar T V S, Rahman S H, Pavan I D, Ravichandran M, Nayak S. 2009. Comparison of AMSR-E and TMI sea surface temperature with Argo near-surface temperature over the Indian Ocean. Int. J. Remote Sens., 30 (10): 669–2684.CrossRefGoogle Scholar
  34. Wang C Z, Weisberg R H. 2000. The 1997-98 El Niño Evolution Relative to Previous El Niño Events. J. Clim., 13 (2): 88–501.CrossRefGoogle Scholar
  35. Wentz F J, Gentemann C, Smith D, Chelton D. 2000. Satellite measurements of sea surface temperature through clouds. Science, 288 (5467): 47–850.CrossRefGoogle Scholar
  36. Wentz F J, Gentemann J C, Ashcroft P. 2003. On-orbit calibration of AMSR-E and the retrieval of ocean products. In: Paper presented at 12 th Conference on Satellite Meteorology and Oceanography. American Meteorological Society, Long Beach, CA.Google Scholar
  37. Wentz F J, Meissner T. 1999. AMSR ocean algorithm, version 2. RSS Technical Report 121599A. Remote Sensing Systems, Santa Rosa, Calif.Google Scholar
  38. Wentz F J, Meissner T. 2000. AMSR ocean algorithm, version 2. Report Number 121599A-1. Remote Sensing Systems, Santa Rosa, CA.Google Scholar
  39. Wentz F J. 1996. AMSR ocean algorithm, RSS Technical Report 120296. Remote Sensing System, Santa Rosa, CA.Google Scholar
  40. Wentz F J. 1998. Algorithm theoretical basis document: AMSR ocean algorithm. RSS Technical Report 050198. Remote Sensing System, Santa Rosa, CA.Google Scholar
  41. Yokoyama R, Tanba S, Souma T. 1995. Sea surface effects on the sea surface temperature estimation by remote sensing. Int. J. Remote Sens., 16 (2): 27–238.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zenghong Liu (刘增宏)
    • 1
    • 2
  • Xingrong Chen (陈幸荣)
    • 3
  • Chaohui Sun (孙朝辉)
    • 2
  • Xiaofen Wu (吴晓芬)
    • 2
  • Shaolei Lu (卢少磊)
    • 2
  1. 1.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of OceanographyState Oceanic AdministrationHangzhouChina
  2. 2.Second Institute of OceanographyState Oceanic AdministrationHangzhouChina
  3. 3.National Marine Environmental Forecasting CenterBeijingChina

Personalised recommendations