Advertisement

Chinese Journal of Oceanology and Limnology

, Volume 34, Issue 5, pp 1097–1105 | Cite as

The bounding-surfaces record of a barrier spit from Huangqihai Lake, North China: implications for coastal barrier boundary hierarchy

  • Xin Shan (单新)
  • Xinghe Yu (于兴河)
  • Peter D. Clift
  • Tianyi Wang (王天意)
  • Chengpeng Tan (谭程鹏)
  • Lina Jin (金丽娜)
Geology

Abstract

Ground-penetrating radar and trenching studies of a barrier spit on the north shore of Huangqihai Lake were made, that reveal important implications for the coastal washover barrier boundary hierarchy and interpretations of this depositional record. A four-fold hierarchy bounding-surface model, representing different levels of impact and genesis, is defined. Each level of the hierarchy is enclosed by a distinct kind of surface characterized by different ground-penetrating radar reflection features, sedimentary characteristics (color, grain size, sorting, rounding and sedimentary structures) and origin. We suggest that this hierarchical model can be applied to any coastal washover barrier deposits.

Keywords

coastal barrier boundary hierarchy washover deposits ground-penetrating radar bounding surface Huangqihai Lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen J R L. 1983. Studies in fluviatile sedimentation: bars, bar-complexes and sandstone sheets (low-sinuosity braided streams) in the Brownstones (L. devonian), Welsh borders. Sedimentary Geology, 33(4): 237–293.CrossRefGoogle Scholar
  2. Bird E C F. 2000. Coastal Geomorphology: an Introduction. John Wiley & Sons, Ltd., New York. 434p.Google Scholar
  3. Blakey R C, Middleton L T. 1983. Permian shoreline eolian complex in central Arizona: dune changes in response to cyclic sealevel changes. Developments in Sedimentology, 38: 551–581.CrossRefGoogle Scholar
  4. Blott S J, Pye K. 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26(11): 1 237–1 248.CrossRefGoogle Scholar
  5. Bridge J S, Mackey S D. 1993. A revised alluvial stratigraphy model. In: Marzo M, Puidefàbregas C eds. Special publication of the International Association of Sedimentologists. International Association of Sedimentologists, Utrecht. p.319–337.Google Scholar
  6. Bristow C S, Lancaster N, Duller G A T. 2005. Combining ground penetrating radar surveys and optical dating to determine dune migration in Namibia. Journal of the Geological Society, 162(2): 315–321.CrossRefGoogle Scholar
  7. Bristow C S. 2009. Ground penetrating radar in aeolian dune sands. In: Jol H M ed. Ground Penetrating Radar: Theory and Applications. The Netherlands, Amsterdam. p.271–297.CrossRefGoogle Scholar
  8. Brookfield M E. 1977. The origin of bounding surfaces in ancient aeolian sandstones. Sedimentology, 24(3): 303–332.CrossRefGoogle Scholar
  9. Chen L, Shen H Y, Jia Y L, Wu J L, Li X S, Wei L, Wang P L. 2008. Environmental change inferred from Rb and Sr of lacustrine sediments in Huangqihai Lake, Inner Mongolia. Journal of Geographical Sciences, 18(3): 373–384.CrossRefGoogle Scholar
  10. Costas S, Alejo I, Rial F, Lorenzo H, Nombela M A. 2006. Cyclical evolution of a modern transgressive sand barrier in Northwestern Spain elucidated by GPR and aerial photos. Journal of sedimentary Research, 76(9): 1 077–1 092.CrossRefGoogle Scholar
  11. Davis Jr R A. 1994. Geology of Holocene Barrier Island Systems. Springer-Verlag, New York.CrossRefGoogle Scholar
  12. Davis Jr R, Fitzgerald D. 2009. Beaches and Coasts. 4 th edn. John Wiley & Sons, Oxford, UK.Google Scholar
  13. Dolan R, Hayden B. 1981. Storms and shoreline configuration. Journal of Sedimentary Research, 51(3): 737–744.Google Scholar
  14. Fisher J S, Leatherman S P, Perry F C. 1974. Overwash processes on assateague island. Coastal Engineering Proceedings, (14): 1 194–1 212.Google Scholar
  15. Fitzgerald D M, Penland S, Nummedal D. 1984. Control of barrier island shape by inlet sediment bypassing: east frisian islands, West Germany. Developments in Sedimentology, 39: 355–376.CrossRefGoogle Scholar
  16. Garrison Jr J R, Williams J, Miller S P, Weber II E T, McMechan G, Zeng X X. 2010. Ground-penetrating radar study of North Padre Island: implications for barrier island internal architecture, model for growth of progradational microtidal barrier islands, and Gulf of Mexico sea-level cyclicity. Journal of Sedimentary Research, 80(4): 303–319.CrossRefGoogle Scholar
  17. Greenwood B, Aagaard T, Nielsen J. 2004. Swash bar morphodynamics in the danish wadden sea: sand bed oscillations and suspended sediment flux during an accretionary phase of the foreshore cycle. Geografisk Tidsskrift -Danish Journal of Geography, 104(1): 15–29.CrossRefGoogle Scholar
  18. Holland K T, Holman R A, Sallenger A H. 1991. Estimation of overwash bore velocities using video techniques. In: Proceedings of Coastal Sediments’ 91. ASCE, Reston, Virginia. p. 489–497.Google Scholar
  19. Kim J H, Cho S J, Yi M J. 2007. Removal of ringing noise in GPR data by signal processing. Geosciences Journal, 11(1): 75–81.CrossRefGoogle Scholar
  20. Kocurek G. 1981. Significance of interdune deposits and bounding surfaces in aeolian dune sands. Sedimentology, 28(6): 753–780.CrossRefGoogle Scholar
  21. Kocurek G. 1988. First-order and super bounding surfaces in eolian sequences—bounding surfaces revisited. Sedimentary Geology, 56(1–4): 193–206.CrossRefGoogle Scholar
  22. Leatherman S P, Williams A T. 1977. Lateral textural grading in overwash sediments. Earth Surface Processes, 2(4): 333–341.CrossRefGoogle Scholar
  23. Leatherman S P. 1979. Barrier dune systems: a reassessment. Sedimentary Geology, 24(1–2): 1–16.CrossRefGoogle Scholar
  24. Lindhorst S, Betzler C, Hass H C. 2008. The sedimentary architecture of a Holocene barrier spit (Sylt, German Bight): swash-bar accretion and storm erosion. Sedimentary Geology, 206(1–4): 1–16.CrossRefGoogle Scholar
  25. Miall A D. 1989. Architectural elements and bounding surfaces in channelized clastic deposits: Notes on comparisons between fluvial and turbidite systems. In: Taira A, Masuda F eds. Sedimentary Facies in the Active Plate Margin. Terra Scientific Publishing Company, Tokyo. p.3–15.Google Scholar
  26. Miall A D. 1996. The Geology of Fluvial Deposits. Springer, Berlin. 582p.Google Scholar
  27. Miall A D. 2014. Fluvial Depositional Systems. Springer, Berlin. 316p.CrossRefGoogle Scholar
  28. Neal A, Richards J, Pye K. 2003. Sedimentology of coarseclastic beach-ridge deposits, Essex, southeast England. Sedimentary Geology, 162(3–4): 167–198.CrossRefGoogle Scholar
  29. Nebel S H, Trembanis A C, Barber D C. 2011. Shoreline analysis and barrier island dynamics: decadal scale patterns from Cedar Island, Virginia. Journal of Coastal Research, 28(2): 332–341.Google Scholar
  30. Nutz A, Ghienne J F, Schuster M, Dietrich P, Roquin C, Hay M B, Bouchette F, Cousineau P A. 2015. Forced regressive deposits of a deglaciation sequence: example from the late quaternary succession in the Lake Saint-Jean basin (Québec, Canada). Sedimentology, 62(6): 1 573–1 610.CrossRefGoogle Scholar
  31. Prather B E, Keller F B, Chapin M A. 2000. Hierarchy of deepwater architectural elements with reference to seismic resolution: implications for reservoir prediction and modeling. In: Deep-Water Reservoirs of the World: Gulf Coast Section SEPM Foundation 20th Annual Bob F. Perkins Research Conference. SEPM, Houston, Texas. p.817–835.CrossRefGoogle Scholar
  32. Sallenger Jr A H. 2000. Storm impact scale for barrier islands. Journal of Coastal Research, 16(3): 890–895.Google Scholar
  33. Sandmeier K J. 2014. REFLEXW: Windows TM 9x/NT/2000/ XP/7/8-program for the processing of seismic, acoustic or electromagnetic reflection, refraction and transmission data. Sandmeier sientific software, Karlsruhe, Germany.Google Scholar
  34. Schwartz R K. 1982. Bedform and stratification characteristics of some modern small-scale washover sand bodies. Sedimentology, 29(6): 835–849.CrossRefGoogle Scholar
  35. Sedgwick P E, Davis Jr R A. 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine Geology, 200(1–4): 31–48.CrossRefGoogle Scholar
  36. Shan X, Yu X H, Clift P D, Tan C P, Jin L N, Li M T, Li W. 2015. The ground penetrating radar facies and architecture of a Paleo-spit from Huangqihai Lake, North China: implications for genesis and evolution. Sedimentary Geology, 323: 1–14.CrossRefGoogle Scholar
  37. Switzer A D, Bristow C S, Jones B G. 2006. Investigation of large-scale washover of a small barrier system on the southeast Australian coast using ground penetrating radar. Sedimentary Geology, 183(1–2): 145–156.CrossRefGoogle Scholar
  38. Switzer A D, Jones B G. 2008. Large-scale washover sedimentation in a freshwater lagoon from the southeast Australian coast: sea-level change, tsunami or exceptionally large storm? The Holocene, 18(5): 787–803.CrossRefGoogle Scholar
  39. Woodroffe C D. 2002. Coasts: Form, Process and Evolution. Cambridge University Press, Cambridge.Google Scholar
  40. Zhang J R, Jia Y L, Lai Z P, Long H, Yang L H. 2011. Holocene evolution of Huangqihai Lake in semi-arid northern China based on sedimentology and luminescence dating. The Holocene, 21(8): 1 261–1 268.CrossRefGoogle Scholar
  41. Zhang J R, Lai Z P, Jia Y L. 2012. Luminescence chronology for late quaternary lake levels of enclosed Huangqihai lake in East Asian monsoon marginal area in northern China. Quaternary Geochronology, 10: 123–128.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xin Shan (单新)
    • 1
    • 2
  • Xinghe Yu (于兴河)
    • 1
  • Peter D. Clift
    • 2
  • Tianyi Wang (王天意)
    • 3
  • Chengpeng Tan (谭程鹏)
    • 1
  • Lina Jin (金丽娜)
    • 1
  1. 1.School of Energy ResourcesChina University of Geosciences (Beijing)BeijingChina
  2. 2.Department of Geology and GeophysicsLouisiana State UniversityBaton RougeUSA
  3. 3.School of Geophysics and Geoinformation TechnologyChina University of Geosciences (Beijing)BeijingChina

Personalised recommendations