Chinese Journal of Oceanology and Limnology

, Volume 34, Issue 6, pp 1347–1357 | Cite as

Heat and salt transport throughout the North Pacific Ocean

  • Lina Yang (杨丽娜)
  • Dongliang Yuan (袁东亮)
Physics

Abstract

Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport (MHT) and meridional salt transport (MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents (WBCs) are estimated for the first time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacific. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.

Keywords

absolute geostrophic current P-vector meridional heat transport (MHT) meridional salt transport (MST) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bretherton C S, Widmann M, Dymnikov V P et al. 1999. The effective number of spatial degrees of freedom of a timevarying field. J ournal of Clim ate, 12 (7): 1990–2009.CrossRefGoogle Scholar
  2. Bryden H L, Roemmich D H, Church J A. 1991. Ocean heat transport across 24°N in the Pacific. Deep Sea Res earch Part A. Oceanographic Research Papers, 38 (3): 297–324.CrossRefGoogle Scholar
  3. Chen G X, Gan J P, Xie Q, Chu X Q, Wang D X, Hou Y J. 2012. Eddy heat and salt transports in the South China Sea and their seasonal modulations. J. Geophys. Res., 117 (C5), http://dx.doi.org/10.1029/2011JC007724.Google Scholar
  4. Chu P C. 1995. P-vector method for determining absolute velocity from hydrographic data. Mar. Technol. Soc. J., 29 (2): 3–14.Google Scholar
  5. Chu P C. 2006. P-Vector Inverse Method. Springer-Verlag, Berlin, Heidelberg, Germany. 605p.CrossRefGoogle Scholar
  6. Coachman L K, Aagaard K. 1988. Transports through Bering Strait: Annual and interannual variability. J. Geophys. Res., 93 (C12): 15535–15539.CrossRefGoogle Scholar
  7. Da Silva A M, Young C C, Levitus S. 1994. Atlas of surface marine data 1994, volume 1: algorithms and procedures. NOAA Atlas NESDIS6. U.S. Department of Conmerce, NOAA, NESDIS: 83p.Google Scholar
  8. Delcroix T, Hénin C. 1991. Seasonal and interannual variations of sea surface salinity in the tropical Pacific Ocean. J. Geophys. Res., 96 (C12): 22135–22150.CrossRefGoogle Scholar
  9. Douglass E, Roemmich D, Stammer D. 2010. Interannual variability in North Pacific heat and freshwater budgets. Deep Sea Research Part II: Topical Studies in Oceanography, 57 (13-14): 1127–1140.CrossRefGoogle Scholar
  10. Ganachaud A, Wunsch C. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 (6811): 453–457.CrossRefGoogle Scholar
  11. Ganachaud A, Wunsch C. 2003. Large-scale ocean heat and freshwater transports during the world ocean circulation experiment. Journal of Climate, 16 (4): 696–705.CrossRefGoogle Scholar
  12. Garratt J R. 1977. Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105 (7): 915–929.CrossRefGoogle Scholar
  13. Gruber A. 1977. Determination of the earth-atmosphere radiation budget from NOAA satellite data. NOAA Technical Report NESS 76, U. S. Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite Service, Washington D C, UK. 28p.Google Scholar
  14. Hall M M, Bryden H L. 1982. Direct estimates and mechanisms of ocean heat transport. Deep Sea Research Part A. Oceanographic Research Papers, 29 (3): 339–359.CrossRefGoogle Scholar
  15. Hastenrath S. 1982. On meridional heat transports in the world ocean. J. Phys. Oceanogr., 12 (8): 922–927.CrossRefGoogle Scholar
  16. Hsiung J, Newell R E, Houghtby T. 1989. The annual cycle of oceanic heat storage and oceanic meridional heat transport. Quart. J. Roy. Meteor. Soc., 115 (485): 1–28.CrossRefGoogle Scholar
  17. Hsiung J. 1985. Estimates of global oceanic meridional heat transport. J. Phys. Oceanogr., 15 (11): 1405–1413.CrossRefGoogle Scholar
  18. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D. 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 (3): 437–471.CrossRefGoogle Scholar
  19. Kamenkovich I, Cheng W, Schmid C, Harrison D E. 2011. Effects of eddies on an ocean observing system with profiling floats: idealized simulations of the Argo array. J. Geophys. Res., 116 (C6), http://dx.doi.org/10.1029/2010JC006910.Google Scholar
  20. Kim Y Y, Qu T D, Jensen T et al. 2004. Seasonal and interannual variations of the North Equatorial Current bifurcation in a high-resolution OGCM. J. Geophys. Res., 109 (C3): C03040.CrossRefGoogle Scholar
  21. Klinger B A, Marotzke J. 2000. Meridional heat transport by the subtropical cell. J. Phys. Oceanogr., 30 (4): 696–705.CrossRefGoogle Scholar
  22. Kraus E B, Levitus S. 1986. Annual heat flux variations across the tropic circles. J. Phys. Oceanogr., 16 (8): 1479–1486.CrossRefGoogle Scholar
  23. Lamb P J, Bunker A F. 1982. The annual march of the heat budget of the north and tropical Atlantic Oceans. J. Phys. Oceanogr., 12 (12): 1388–1410.CrossRefGoogle Scholar
  24. Leith C E. 1973. The standard error of time-average estimates of climatic means. J. Appl. Meteor., 12 (6): 1066–1069.CrossRefGoogle Scholar
  25. Li P, Zhang Q L, Liu H W, Xu J P. 2011. Seasonal variation of the North Pacific meridional net heat transport. Advances in Marine Science, 29(3): 275–284. (in Chinese with English abstract)Google Scholar
  26. Li P, Zhang Q P, Liu H W, Xu J P. 2012. Seasonal variation of meridional salt transport in the North Pacific Ocean. Journal of Tropical Oceanography, 31 (4): 28–34. (in Chinese with English abstract)Google Scholar
  27. Macdonald A M. 1998. The global ocean circulation: a hydrographic estimate and regional analysis. Progress in Oceanography, 41 (3): 281–382.CrossRefGoogle Scholar
  28. Marsh R, New A L, Roberts M J, Wood R A. 1996. An intercomparison of a Bryan-Cox-type ocean model and an isopycnic ocean model. Part II: The subtropical gyre and meridional heat transport. J. Phys. Oceanogr., 26 (8): 1528–1551.CrossRefGoogle Scholar
  29. Msadek R, Johns W E, Yeager S G, Danabasoglu G, Delworth T L, Rosati A. 2013. The Atlantic meridional heat transport at 26.5°N and its relationship with the MOC in the RAPID array and the GFDL and NCAR coupled models. Journal of Climate, 26 (12): 4335–4356.CrossRefGoogle Scholar
  30. Qu T D, Lukas R. 2003. The Bifurcation of the North Equatorial Current in the Pacific. J. Phys. Oceanogr., 33 (1): 5–18.CrossRefGoogle Scholar
  31. Roemmich D, Gilson J, Cornuelle B, Weller R. 2001. Mean and time-varying meridional transport of heat at the tropical/subtropical boundary of the North Pacific Ocean. J. Geophys. Res., 106(C5): 8957–8970.CrossRefGoogle Scholar
  32. Roemmich D, Gilson J. 2009. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Progress in Oceanography, 82 (2): 81–100.CrossRefGoogle Scholar
  33. Stammer D, Wunsch C, Giering R, Eckert C, Heimbach P, Marotzke J, Adcroft A, Hill C N, Marshall J. 2003. Volume, heat, and freshwater transports of the global ocean circulation 1993-2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data. J. Geophys. Res., 108 (C1): 3007.CrossRefGoogle Scholar
  34. Stammer D. 1998. On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr., 28 (4): 727–739.CrossRefGoogle Scholar
  35. Talley L D. 2003. Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33 (3): 530–560.CrossRefGoogle Scholar
  36. Talley L D. 2008. Freshwater transport estimates and the global overturning circulation: shallow, deep and throughflow components. Progress in Oceanography, 78 (4): 257–303.CrossRefGoogle Scholar
  37. Toole J M, Zou E, Millard R C. 1988. On the circulation of the upper waters in the western equatorial Pacific Ocean. Deep Sea Research Part A. Oceanographic Research Papers, 35 (9): 1451–1482.CrossRefGoogle Scholar
  38. Trenberth K E, Caron J M. 2001. Estimates of meridional atmosphere and ocean heat transports. Journal of Climate, 14 (16): 3433–3443.CrossRefGoogle Scholar
  39. Uehara H, Kizu S, Hanawa S, Yoshikawa Y, Roemmich D. 2008. Estimation of heat and freshwater transports in the North Pacific using high-resolution expendable bathythermograph data. J. Geophys. Res., 113 (C2): C02014.CrossRefGoogle Scholar
  40. Vonder Haar T H, Oort A H. 1973. New estimate of annual poleward energy transport by northern hemisphere oceans. J. Phys. Oceanogr., 3 (2): 169–172.CrossRefGoogle Scholar
  41. Vonderhaar T H, Ellis J S. 1974. Atlas of radiation budget measurements from satellites, 1962-1970. Atmospheric Science Technical Report no. 231, Colorado State University, Fort Collins, CO, United States. 180p.Google Scholar
  42. Wang J D, Carton J A. 2002. Seasonal heat budgets of the North Pacific and North Atlantic Oceans. J. Phys. Oceanogr., 32 (12): 3474–3489.CrossRefGoogle Scholar
  43. Wang Q Y, Hu D X. 2006. Bifurcation of the North Equatorial Current derived from altimetry in the Pacific Ocean. Journal of Hydrodynamics, Series B, 18 (5): 620–626.CrossRefGoogle Scholar
  44. Wijffels S E, Schmitt R W, Bryden H L, Stigebrandt A. 1992. Transport of freshwater by the oceans. J. Phys. Oceanogr., 22 (2): 155–162.CrossRefGoogle Scholar
  45. Wunsch C. 1999. Where do ocean eddy heat fluxes matter? J. Geophys. Res., 104 (C6): 13235–13249.CrossRefGoogle Scholar
  46. Yuan D L, Zhang Z C, Chu P C, Dewar W K. 2014. Geostrophic circulation in the Tropical North Pacific Ocean based on Argo Profiles. J. Phys. Oceanogr., 44 (2): 558–575.CrossRefGoogle Scholar
  47. Zhang D, Johns W E, Lee T N. 2002. The seasonal cycle of meridional heat transport at 24°N in the North Pacific and in the global ocean. J. Geophys. Res., 107 (C7): 20-1-20-24.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lina Yang (杨丽娜)
    • 1
    • 2
    • 3
  • Dongliang Yuan (袁东亮)
    • 1
    • 3
    • 4
  1. 1.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Ocean Circulation and WavesChinese Academy of SciencesQingdaoChina
  4. 4.Qingdao Collaborative Innovation Center of Marine Science and TechnologyQingdaoChina

Personalised recommendations