Chinese Journal of Oceanology and Limnology

, Volume 34, Issue 6, pp 1383–1393 | Cite as

Absolute geostrophic currents in global tropical oceans

  • Lina Yang (杨丽娜)
  • Dongliang Yuan (袁东亮)Email author


A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.


P-vector absolute geostrophic currents world tropical oceans Sverdrup balance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Böning C W, Döscher R, Isemer H J. 1991. Monthly mean wind stress and Sverdrup transports in the North Atlantic: a comparison of the Hellerman-Rosenstein and Isemer-Hasse climatologies. J. Phys. Oceanogr., 21 (2): 221–235.CrossRefGoogle Scholar
  2. Bretherton C S, Widmann M, Dymnikov V P et al. 1999. The effective number of spatial degrees of freedom of a timevarying field. J. Clim., 12 (7): 1990–2009.CrossRefGoogle Scholar
  3. Chang Y L, Miyazawa Y, Guo X Y. 2015. Effects of the STCC eddies on the Kuroshio based on the 20-year JCOPE2 reanalysis results. Prog. Oceanogr., 135: 64–76.CrossRefGoogle Scholar
  4. Chu P C. 1995. P-vector method for determining absolute velocity from hydrographic data. Mar. Technol. Soc. J., 29 (3): 3–14.Google Scholar
  5. Chu P C. 2006. P-vector Inverse Method. Springer, Berlin Heidelberg. 605p.CrossRefGoogle Scholar
  6. Garratt J R. 1977. Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105 (7): 915–929.CrossRefGoogle Scholar
  7. Gray A R, Riser S C. 2014. A global analysis of sverdrup balance using absolute geostrophic velocities from argo. J. Phys. Oceanogr., 44 (4): 1213–1229.CrossRefGoogle Scholar
  8. Hautala S L, Roemmich D H, Schmilz Jr W J. 1994. Is the north pacific in sverdrup balance along 24°N? J. Geophys. Res., 99 (C8): 16041–16052.CrossRefGoogle Scholar
  9. Jia F, Wu L X, Qiu B. 2011. Seasonal modulation of eddy kinetic energy and its formation mechanism in the southeast Indian Ocean. J. Phys. Oceanogr., 41 (4): 657–665.CrossRefGoogle Scholar
  10. Kalnay E, Kanamitsu M, Kistler R et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77 (3): 437–471.CrossRefGoogle Scholar
  11. Killworth P D. 1986. A Bernoulli inverse method for determining the ocean circulation. J. Phys. Oceanogr., 16 (12): 2031–2051.CrossRefGoogle Scholar
  12. Lagerloef G S E, Mitchum G T, Lukas R B, Niiler P P. 1999. Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J. Geophy. Res., 104 (C10): 23313–23326.CrossRefGoogle Scholar
  13. Large W G, Pond S. 1981. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11 (3): 324–336.CrossRefGoogle Scholar
  14. Leetmaa A, Niiler P, Stommel H. 1977. Does the Sverdrup relation account for the mid-Atlantic circulation? J. Mar. Res., 35: 1–10.Google Scholar
  15. Leith C E. 1973. The standard error of time-average estimates of climatic means. J. Appl. Meteor., 12 (6): 1066–1069.CrossRefGoogle Scholar
  16. Marchuk G I, Sarkisian A J, Kochergin V P. 1973. Calculations of flows in a baroclinic ocean: numerical methods and results. Geophys., Fluid Dyn., 5 (1): 89–99.CrossRefGoogle Scholar
  17. Meyers G. 1980. Do Sverdrup transports account for the Pacific North Equatorial Countercurrent? J. Geophys. Res., 85 (C2): 1073–1075.CrossRefGoogle Scholar
  18. Polonsky A. 2015. Comments on “a global analysis of sverdrup balance using absolute geostrophic velocities from argo”. J. Phys. Oceanogr., 45 (5): 1446–1448.CrossRefGoogle Scholar
  19. Qiu B. 1999. Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29 (10): 2471–2486.CrossRefGoogle Scholar
  20. Rio M H, Hernandez F. 2004. A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109 (C12): C12302, Scholar
  21. Roemmich D, Gilson J. 2009. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Prog. Oceanogr., 82 (2): 81–100.CrossRefGoogle Scholar
  22. Schmitz W J, Thompson J D, Luyten J R. 1992. The Sverdrup circulation for the Atlantic along 24°N. J. Geophys. Res., 97 (C5): 7251–7256.CrossRefGoogle Scholar
  23. Stommel H, Schott F. 1977. The beta spiral and the determination of the absolute velocity field from hydrographic station data. Deep Sea Res., 24 (3): 325–329.CrossRefGoogle Scholar
  24. Sverdrup H U. 1947. Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33 (11): 318–326.CrossRefGoogle Scholar
  25. Wunsch C, Roemmich D. 1985. Is the north atlantic in sverdrup balance? J. Phys.Oceanogr., 15 (12): 1876–1880.CrossRefGoogle Scholar
  26. Wunsch C. 1978. The North Atlantic general circulation west of 50°W determined by inverse methods. Rev. Geophys., 16 (4): 583–620.CrossRefGoogle Scholar
  27. Wunsch C. 2011. The decadal mean ocean circulation and Sverdrup balance. J. Mar. Res., 69 (2-3): 417–434.CrossRefGoogle Scholar
  28. Yuan D L, Zhang Z C, Chu P C, Dewar W K. 2014. Geostrophic circulation in the tropical north pacific ocean based on argo profiles. J. Phys. Oceanogr., 44 (2): 558–575.CrossRefGoogle Scholar
  29. Zhang Z C, Yuan D L, Chu P C. 2013. Geostrophic meridional transport in tropical northwest Pacific based on Argo profiles. Chin. J. Oceanol. Limnol., 31 (3): 656–664.CrossRefGoogle Scholar
  30. Zhang Z G, Wang W, Qiu B. 2014. Oceanic mass transport by mesoscale eddies. Science, 345 (6194): 322–324.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lina Yang (杨丽娜)
    • 1
    • 2
    • 3
  • Dongliang Yuan (袁东亮)
    • 1
    • 3
    • 4
    Email author
  1. 1.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Ocean Circulation and WavesChinese Academy of SciencesQingdaoChina
  4. 4.Qingdao Collaborative Innovation Center of Marine Science and TechnologyQingdaoChina

Personalised recommendations