Chinese Journal of Oceanology and Limnology

, Volume 34, Issue 4, pp 835–846 | Cite as

Subduction/obduction rate in the North Pacific diagnosed by an eddy-resolving model

  • Lingling Liu (刘玲玲)
  • Ruixin Huang (黄瑞新)
  • Fan Wang (王凡)
Physics
  • 77 Downloads

Abstract

Ventilation in the North Pacific is examined using data from the eddy-resolving 1/12° global HYbrid Coordinate Ocean Model (HYCOM) and QuikSCAT wind stress data. For the period January 2004 to December 2006 and area 20°–40°N, the total annual subduction rate is estimated at 79 Sv, and the obduction rate 41 Sv. Resolving the small-scale and high-frequency components of the eddy field can increase the subduction rate by 42 Sv, and obduction by 31 Sv. Lateral induction is the dominant contributor to enhancement of subduction/obduction, and temporal change of mixed layer depth has a secondary role. Further analysis indicates that the high-frequency components of the eddy field, especially those with timescale shorter than 10 days, are the most critical factor enhancing subduction/obduction.

Keywords

subduction obduction eddy-resolved high frequency North Pacific 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cummings J A. 2005. Operational multivariate ocean data assimilation. Quart. J. Roy. Met eor. Soc., 131 (613): 3583–3604.CrossRefGoogle Scholar
  2. Cushman-Roisin B. 1987. Subduction. Dynamics of the oceanic surface mixed layer. In: Proceedings ‘Aha Hulico’a’, Hawaiian Winter Workshop. Hawaii Inst. of Geophysics Special Publications, Hawaii. p.181–196.Google Scholar
  3. De Szoeke R A. 1980. On the effects of horizontal variability of wind stress on the dynamics of the ocean mixed layer. J. Phys. Oceanogr., 10 (9): 1439–1454.CrossRefGoogle Scholar
  4. Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid. Mech., 41: 253–282.CrossRefGoogle Scholar
  5. Follows M J, Marshall J C. 1994. Eddy driven exchange at ocean fronts. Ocean Modell., 102: 5–9.Google Scholar
  6. Hazeleger W, Drijfhout S S. 2000. Eddy subduction in a model of the subtropical gyre. J. Phys. Oceanogr., 30 (4): 677–695.CrossRefGoogle Scholar
  7. Huang R X, Qiu B. 1998. The structure of the wind-driven circulation in the subtropical South Pacific Ocean. J. Phys. Oceanogr., 28 (6): 1173–1186.CrossRefGoogle Scholar
  8. Karstensen J, Quadfasel D. 2002a. Water subducted into the Indian Ocean subtropical gyre. Deep-Sea Res earch Part II: Topical Studies in Oceanography, 49 (7-8): 1441–1457.CrossRefGoogle Scholar
  9. Karstensen J, Quadfasel D. 2002b. Formation of Southern Hemisphere thermocline waters: water mass conversion and subduction. J. Phys. Oceanogr., 32 (11): 3020–3038.CrossRefGoogle Scholar
  10. Kouketsu S, Tomits H, Oka E, Hosoda S, Kobayashi T, Sato K. 2011. The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific. J. Oceanogr., 68 (1): 63–77.CrossRefGoogle Scholar
  11. Liu L L, Huang R X. 2012. The global subduction/obduction rates: their interannual and decadal variability. J. Clim ate, 25 (4): 1096–1115.CrossRefGoogle Scholar
  12. Liu L L, Wang F, Huang R X. 2011. Enhancement of subduction/obduction due to hurricane-induced mixed layer deepening. Deep-Sea Res earch I: Oceanographic Research Papers, 58 (6): 658–667.CrossRefGoogle Scholar
  13. Marshall D. 1997. Subduction of water masses in an eddying ocean. J. Mar Res., 55 (2): 201–222.CrossRefGoogle Scholar
  14. Marshall J C, Williams R G, Nurser A J G. 1993. Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr., 23 (7): 1315–1329.CrossRefGoogle Scholar
  15. Masuzawa J. 1969. Subtropical mode water. Deep Sea Res earch and Oceanographic Abstracts, 16 (5): 463–472.CrossRefGoogle Scholar
  16. Metzger E J, Hurlburt H E, Xu X, Shriver J F, Gordon A L, Sprintall J, Susanto R D, van Aken H M. 2010. Simulated and observed circulation in the Indonesian Seas: 1/12° global HYCOM and the INSTANT observations. Dyn. Atmos. Oceans, 50 (2): 275–300, http://dx.doi.org/10.1016/j.dynatmoce.2010.04.002.CrossRefGoogle Scholar
  17. Nishikawa S, Tsujino H, Sakamoto K, Nakano H. 2010. Effects of mesoscale eddies on subduction and distribution of Subtropical Mode Water in an eddy-resolving OGCM of the western North Pacific. J. Phys. Oceanogr., 40 (8): 1748–1765.CrossRefGoogle Scholar
  18. Oka E. 2009. Seasonal and interannual variation of North Pacific Subtropical Mode Water in 2003-2006. J. Oceanogr., 65 (2): 151–164.CrossRefGoogle Scholar
  19. Pollard R T, Regier L A. 1992. Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr., 22 (6): 609–625.CrossRefGoogle Scholar
  20. Qiu B, Chen S M, Hacker P. 2007. Effect of mesoscale eddies on subtropical mode water variability from the Kuroshio Extension System Study (KESS). J. Phys. Oceanogr., 37 (4): 982–1000.CrossRefGoogle Scholar
  21. Qiu B, Hacker P, Chen S M, Donohue K A, Watts D R, Mitsudera H, Hogg N G, Jayne S R. 2006. Observations of the subtropical mode water evolution from the Kuroshio Extension System Study. J. Phys. Oceanogr., 37 (3): 457–473.CrossRefGoogle Scholar
  22. Qiu B, Huang R X. 1995. Ventilation of the North Atlantic and North Pacific: subduction versus obduction. J. Phys. Oceanogr., 25 (10): 2374–2390.CrossRefGoogle Scholar
  23. Qu T D, Chen J. 2009. A North Pacific decadal variability in subduction rate. Geophys. Res. Lett., 36 (22): L22602, http://dx.doi.org/10.1029/2009GL040914.CrossRefGoogle Scholar
  24. Qu T D, Xie S P, Mitsudera H, Ishida A. 2002. Subduction of the North Pacific mode waters in a global high-resolution GCM. J. Phys. Oceanogr., 32 (3): 746–763.CrossRefGoogle Scholar
  25. Rainville L, Jayne S R, McClear J L, Multrud M E. 2007. Formation of subtropical mode water in a high-resolution ocean simulation of the Kuroshio Extension region. Ocean Modell., 17 (4): 338–356.CrossRefGoogle Scholar
  26. Suga T, Hanawa K, Toba Y. 1989. Subtropical mode water in the 137°E section. J. Phys. Oceanogr., 19 (10): 1605–1618.CrossRefGoogle Scholar
  27. Tandon A, Zahariev K. 2001. Quantifying the role of mixed layer entrainment for water mass transformation in the North Atlantic. J. Phys. Oceanogr., 31: 1120–1131.CrossRefGoogle Scholar
  28. Trossman D S, Thompson L A, Kelly K A, Kwon Y O. 2009. Estimates of North Atlantic Ventilation and mode water formation for winters 2002-06. J. Phys. Oceanogr., 39 (10): 2600–2617.CrossRefGoogle Scholar
  29. Tsujino H, Fujii Y. 2007. Improved representation of currents and water masses in the upper layer of the North Pacific Ocean in eddy-resolving OGCMS. CLIVAR Exchanges, No. 43, International CLIVAR Project Office, Southampton, United Kingdom. p.19–21.Google Scholar
  30. Uehara H, Suga T, Hanawa K, Shikama N. 2003. A role of eddies in formation and transport of North Pacific Subtropical Mode Water. Geophys. Res. Lett., 30 (13): 1705, http://dx.doi.org/10.1029/2003GL017542.CrossRefGoogle Scholar
  31. Xu L X, Xie S P, Mcclearn J L, Liu Q Y, Sasaki H. 2014. Mesoscale eddy effects on the subduction of North Pacific mode waters. J. Geophys. Res. Oceans, 119 (8): 4867–4886, http://dx.doi.org/10.1002/2014JC009861.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Lingling Liu (刘玲玲)
    • 1
  • Ruixin Huang (黄瑞新)
    • 2
  • Fan Wang (王凡)
    • 1
  1. 1.Key Laboratory of Ocean Circulation and Waves, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Department of Physical OceanographyWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations