Chinese Journal of Oceanology and Limnology

, Volume 34, Issue 4, pp 821–834 | Cite as

Experiments on exactly computing non-linear energy transfer rate in MASNUM-WAM

  • Xingjie Jiang (江兴杰)Email author
  • Daolong Wang (王道龙)
  • Dalu Gao (高大鲁)
  • Tingting Zhang (张婷婷)


The Webb-Resio-Tracy (WRT) method for exact computation of the non-linear energy transfer rate was implemented in MASNUM-WAM, which is a third-generation wave model solving the discrete spectral balance equation. In this paper, we describe the transformation of the spectral space in the original WRT method. Four numerical procedures were developed in which the acceleration techniques in the original WRT method, such as geometric scaling, pre-calculating, and grid-searching, are all reorganized. A series of numerical experiments including two simulations based on real data were performed. The availability of such implementation in both serial and parallel versions of the wave model was proved, and a comparison of computation times showed that some of the developed procedures provided good efficacy. With exact computation of non-linear energy transfer, MASNUM-WAM now can be used to perform numerical experiments for research purposes, which augurs well for further developments of the model.


nonlinear energy transfer the WRT method geometric scaling MASNUM-WAM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ardhuin F, Herbers T H C, O’Reilly W C. 2001. A hybrid Eulerian-Lagrangian model for spectral wave evolution with application to bottom friction on the continental shelf. J. Phys. Oceanogr., 31(6): 1498–1516.CrossRefGoogle Scholar
  2. Barnett T P. 1968. On the generation, dissipation, and prediction of ocean wind waves. J. Geophys. Res., 73(2):513–530.CrossRefGoogle Scholar
  3. Booij N, Haagsma I J G, Holthuijsen L H, Kieftenburg A T M M, Ris R C, van der Westhuysen A J, Zijlema M. 2004. SWAN User Manual Cycle III Version 40.41. Delft University of Technology.Google Scholar
  4. Booij N, Ris R C, Holthuijsen L H. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104(C4): 7649–7666.CrossRefGoogle Scholar
  5. Donelan M A, Hamilton J, Hui W H. 1985. Directional spectra of wind-generated waves. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 315(1534): 509–562.CrossRefGoogle Scholar
  6. Ewing J A. 1971. A numerical wave prediction method for the North Atlantic Ocean. Dtsch. Hydrogr. Z., 24(6): 241–261.CrossRefGoogle Scholar
  7. Hasselmann D E, Dunckel M, Ewing J A. 1980. Directional wave spectra observed during JONSWAP 1973. J. Phys. Oceanogr., 10(8): 1264–1280.CrossRefGoogle Scholar
  8. Hasselmann K. 1962. On the non-linear energy transfer in a gravity-wave spectrum: part 1. General theory. J. Fluid Mech., 12(4): 481–500.CrossRefGoogle Scholar
  9. Hasselmann K. 1963a. On the non-linear energy transfer in a gravity-wave spectrum: part 2. Conservation theorems; wave-particle analogy; irreversibility. J. Fluid Mech., 15(2): 273–281.CrossRefGoogle Scholar
  10. Hasselmann K. 1963b. On the non-linear energy transfer in a gravity-wave spectrum: part 3. Evaluation of energy flux and swell-sea interaction for a Neumann spectrum. J. Fluid Mech., 15(3): 385–398.CrossRefGoogle Scholar
  11. Hasselmann S, Hasselmann K, Allender J H, Barnett T P. 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15 (11): 1378–1391.CrossRefGoogle Scholar
  12. Hasselmann S, Hasselmann K. 1981. A symmetrical method of computing the non-linear transfer in a gravity-wave spectrum. Hamburger Geophys, Einzelschriften. 52p.Google Scholar
  13. Hasselmann S, Hasselmann K. 1985a. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: a new method for efficient computations of the exact nonlinear transfer integral. J. Phys. Oceanogr., 15(11): 1369–1377.CrossRefGoogle Scholar
  14. Hasselmann S, Hasselmann K. 1985c. The wave model EXACT-NL. In: The SWAMP Group ed. Ocean Wave Modelling. Plenum Press, New York. p.249–251.CrossRefGoogle Scholar
  15. Hersbach H, Janssen P A E M. 1999. Improvement of the short-fetch behavior in the Wave Ocean Model (WAM). Journal of Atmospheric and Oceanic Technology, 16(7): 884–892.CrossRefGoogle Scholar
  16. Herterich K, Hasselmann K. 1980. A similarity relation for the nonlinear energy transfer in a finite-depth gravity-wave spectrum. J. Fluid Mech., 97(1): 215–224.CrossRefGoogle Scholar
  17. Hwang PA, Wang D W. 2004. Field measurements of duration-limited growth of wind-generated ocean surface waves at young stage of development. J. Phys. Oceanogr., 34(10): 2316–2326.CrossRefGoogle Scholar
  18. Masuda A. 1980. Nonlinear energy transfer between wind waves. J. Phys. Oceanogr., 10(12): 2082–2093.CrossRefGoogle Scholar
  19. Monbaliu J, Hargreaves J C, Carretero J-C, Gerritsen H, Flather R. 1999. Wave modelling in the PROMISE project. Coast. Eng., 37(3–4): 379–407.CrossRefGoogle Scholar
  20. Resio D T, Perrie W. 1991. A numerical study of nonlinear energy fluxes due to wave-wave interactions. Part 1: methodology and basic results. J. Fluid Mech., 223: 609–629.CrossRefGoogle Scholar
  21. The Wamdi Group. 1988. The WAM model-a third generation ocean wave prediction model. J. Phys. Oceanogr., 18(12): 1775–1810.CrossRefGoogle Scholar
  22. Tolman H L. 1991. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr., 21(16): 782–797.CrossRefGoogle Scholar
  23. Tolman H L. 2002. User Manual and System Documentation of WAVEWATCH III™ Version 2.22. Technical Report 222, NOAA/NWS/NCEP/MMAB. 133p.Google Scholar
  24. Tolman H L. 2009. User Manual and System Documentation of WAVEWATCH III™ Version 3.14. Technical Report 276, NOAA/NWS/NCEP/MMAB. 194p.Google Scholar
  25. Tracy B A, Resio D T. 1982. Theory and Calculation of the Nonlinear Energy Transfer Between Sea Waves in Deep Water. WIS Technical Report 11. US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. USA. 47p.Google Scholar
  26. van Vledder G Ph, Herbers T H C, Jensen R E, Resio D T, Tracy B A. 2000. Modelling of non-linear quadruplet wave-wave interactions in operational wave models. In: Proceedings of the 27th International Conference on Coastal Engineering. Sydney. p.797–811.Google Scholar
  27. van Vledder G Ph. 2006. The WRT method for the computation of non-linear four-wave interactions in discrete spectral wave models. Coast. Eng., 53(2–3): 223–242.CrossRefGoogle Scholar
  28. Wang G S, Qiao F L, Yang Y Z. 2007. Study on parallel algorithm for MPI-based LAGFD-WAM numerical wave model. Advances in Marine Science, 25(4): 401–407. (in Chinese with English abstract)Google Scholar
  29. Webb D J. 1978. Non-linear transfers between sea waves. Deep-Sea Res., 25(3): 279–298.CrossRefGoogle Scholar
  30. Yang Y Z, Qiao F L, Zhao W, Teng Y, Yuan Y L. 2005. MASNUM ocean wave numerical model in spherical coordinates and its application. Acta Oceanologica Sinica, 27(2): 1–7. (in Chinese with English abstract)Google Scholar
  31. Yuan Y L, Hua F, Pan Z D, Sun L T. 1992b. The LAGFDWAM wave model—II. Reginal Characteristic inlaid scheme and its application. Acta Oceanologica Sinica, 14(6): 12–24. (in Chinese)Google Scholar
  32. Yuan Y L, Pan Z D, Hua F, Sun L T. 1992a. The LAGFDWAM wave model—I. Basic physical model. Acta Oceanologica Sinica, 14(5): 1–7. (in Chinese)Google Scholar
  33. Yuan Y L, Tung C C, Huang N E. 1986. Statistical characteristics of breaking waves. In: Phillips O M, Hasselmann K eds. Wave Dynamics and Radio Probing of the Ocean Surface. Springer, New York. p.265–272.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xingjie Jiang (江兴杰)
    • 1
    • 2
    Email author
  • Daolong Wang (王道龙)
    • 2
  • Dalu Gao (高大鲁)
    • 1
    • 2
  • Tingting Zhang (张婷婷)
    • 2
  1. 1.Ocean University of ChinaQingdaoChina
  2. 2.First Institute of OceanographyState Oceanic AdministrationQingdaoChina

Personalised recommendations