Chinese Journal of Oceanology and Limnology

, Volume 34, Issue 5, pp 1034–1043 | Cite as

Homologous cloning, characterization and expression of a new halophyte phytochelatin synthase gene in Suaeda salsa

  • Ming Cong (丛明)
  • Jianmin Zhao (赵建民)
  • Jiasen Lü (吕家森)
  • Zhiming Ren (任志明)
  • Huifeng Wu (吴惠丰)
Biology

Abstract

The halophyte Suaeda salsa can grow in heavy metal-polluted areas along intertidal zones having high salinity. Since phytochelatins can eff ectively chelate heavy metals, it was hypothesized that S. salsa possessed a phytochelatin synthase (PCS) gene. In the present study, the cDNA of PCS was obtained from S. salsa (designated as SsPCS) using homologous cloning and the rapid amplification of cDNA ends (RACE). A sequence analysis revealed that SsPCS consisted of 1 916 bp nucleotides, encoding a polypeptide of 492 amino acids with one phytochelatin domain and one phytochelatin C domain. A similarity analysis suggested that SsPCS shared up to a 58.6% identity with other PCS proteins and clustered with PCS proteins from eudicots. There was a new kind of metal ion sensor motif in its C-terminal domain. The SsPCS transcript was more highly expressed in elongated and fibered roots and stems (P<0.05) than in leaves. Lead and mercury exposure significantly enhanced the mRNA expression of SsPCS (P<0.05). To the best of our knowledge, SsPCS is the second PCS gene cloned from a halophyte, and it might contain a diff erent metal sensing capability than the first PCS from Thellungiella halophila. This study provided a new view of halophyte PCS genes in heavy metal tolerance.

Keywords

Suaeda salsa halophyte phytochelatin synthase (PCS) homologous cloning heavy metal tissue distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad M A, Gupta M. 2013. Exposure of Brassica juncea (L) to arsenic species in hydroponic medium: comparative analysis in accumulation and biochemical and transcriptional alterations. Environ. Sci. Pollut. Res., 20(11): 8141–8150, http://dx.doi.org/10.1007/s11356-013-1632-y.CrossRefGoogle Scholar
  2. Altschul S F, Madden T L, Schäffer A A, Zhang J H, Zhang Z, Miller W, Lipman D J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res., 25(17): 3389–3402, http://dx.doi.org/10.1093/nar/25.17.3389.CrossRefGoogle Scholar
  3. Boyce R, Chilana P, Rose T M. 2009. iCODEHOP: a new interactive program for designing COnsensus-DEgenerate hybrid oligonucleotide primers from multiply aligned protein sequences. Nucleic Acids Res., 37 (S2): W222–W228, http://dx.doi.org/10.1093/nar/gkp379.CrossRefGoogle Scholar
  4. Brulle F, Cocquerelle C, Wamalah A N, Morgan A J, Kille P, Leprêtre A, Vandenbulcke F. 2008. cDNA cloning and expression analysis of Eisenia fetida (Annelida: Oligochaeta) phytochelatin synthase under cadmium exposure. Ecotox icol. Environ. Safe ty, 71(1): 47–55, http://dx.doi.org/10.1016/j.ecoenv.2007.10.032.CrossRefGoogle Scholar
  5. Cobbett C S. 1999. A family of phytochelatin synthase genes from plant, fungal and animal species. Trends in Plant Sci ence, 4(9): 335–337, http://dx.doi.org/10.1016/S1360-1385(99)01465-X.CrossRefGoogle Scholar
  6. Cong M, Lv J S, Liu X L, Zhao J M, Wu H F. 2013. Gene expression responses in Suaeda salsa after cadmium exposure. Springer Plus, 2 (1): 232, http://dx.doi.org/10.1186/2193-1801-2-232.CrossRefGoogle Scholar
  7. Gawel J E, Ahner B A, Friedland A J, Morel F M M. 1996. Role for heavy metals in forest decline indicated by phytochelatin measurements. Nature, 381(6577): 64–65, http://dx.doi.org/10.1038/381064a0.CrossRefGoogle Scholar
  8. Grill E, Löffler S, Winnacker E L, Zenk M H. 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Nat l. Acad. Sci. USA, 86(18): 6838–6842, http://www.ncbi.nlm.nih.gov/pubmed/16594069.CrossRefGoogle Scholar
  9. Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T. 2003. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J. Exp. Bot., 54(389): 1833–1839, http://www.ncbi.nlm.nih. gov/pubmed/12815036.CrossRefGoogle Scholar
  10. Hirata K, Tsujimoto Y, Namba T, Ohta T, Hirayanagi N, Miyasaka H, Zenk M H, Miyamoto K. 2001. Strong induction of phytochelatin synthesis by zinc in marine green alga, Dunaliella tertiolecta. J. Biosci. Bioeng., 92(1): 24–29, http://dx.doi.org/10.1016/S1389-1723(01)80193-6.CrossRefGoogle Scholar
  11. Inouhe M, Ito R, Ito S, Sasada N, Tohoyama H, Joho M. 2000. Azuki bean cells are hypersensitive to cadmium and do not synthesize phytochelatins. Plant Physiology, 123(3): 1029–1036, http://dx.doi.org/10.1104/pp.123.3.1029.CrossRefGoogle Scholar
  12. Lequeux H, Hermans C, Lutts S, Verbruggen N. 2010. Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol. Biochem., 48(6): 673–682, http://dx.doi.org/10.1016/j.plaphy.2010.05.005.CrossRefGoogle Scholar
  13. Liu X L, Yang C Y, Zhang L B, Li L Z, Liu S J, Yu J B, You L P, Zhou D, Xia C H, Zhao J M, Wu H F. 2011. Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology, 20(6): 1422–1431, http://dx.doi.org/10.1007/s10646-011-0699-9.CrossRefGoogle Scholar
  14. Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 C T method. Methods, 25(4): 402–408, http://dx.doi. org/10.1006/meth.2001.1262.CrossRefGoogle Scholar
  15. Manier N, Brulle F, Le Curieux F, Vandenbulcke F, Deram A. 2012. Biomarker measurements in Trifolium repens and Eisenia fetida to assess the toxicity of soil contaminated with landfill leachate: a microcosm study. Ecotoxicol. Environ. Saf ety, 80: 339–348, http://dx.doi.org/10.1016/j.ecoenv.2012.04.002.CrossRefGoogle Scholar
  16. Manousaki E, Kalogerakis N. 2011. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind. Eng. Chem. Res., 50(2): 656–660, http://dx.doi.org/10.1021/ie100270x.CrossRefGoogle Scholar
  17. Mao T Y, Dai M X, Peng S T, Li G L. 2009. Temporal-spatial variation trend analysis of heavy metals (Cu, Zn, Pb, Cd, Hg) in Bohai Bay in 10 Years. J. Tianjin Univ., (9): 817–825. (in Chinese with English abstract)Google Scholar
  18. Mendoza-Cózatl D G, Rodríguez-Zavala J S, Rodríguez-Enríquez S, Mendoza-Hernandez G, Briones-Gallardo R, Moreno-Sánchez R. 2006. Phytochelatin-cadmiumsulfide high-molecular-mass complexes of Euglena gracilis. FEBS J., 273(24): 5703–5713, http://dx.doi.org/10.1111/j.1742-4658.2006.05558.x.CrossRefGoogle Scholar
  19. Nguyen-Deroche T L N, Caruso A, Le T T, Bui T V, Schoefs B, Tremblin G, Morant-Manceau A. 2012. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms. Scientific World Journal, 2012: 982957, http://dx.doi.org/10.1100/2012/982957.CrossRefGoogle Scholar
  20. Pandey N, Singh G K. 2012. Studies on antioxidative enzymes induced by cadmium in pea plants (Pisum sativum). J. Environ. Biol., 33(2): 201–206, http://www.ncbi.nlm.nih. gov/pubmed/23033681.Google Scholar
  21. Ramos J, Naya L, Gay M, Abián J, Becana M. 2008. Functional characterization of an unusual phytochelatin synthase, LjPCS3, of Lotus japonicus. Plant Physiology, 148(1): 536–545, http://dx.doi.org/10.1104/pp.108.121715.CrossRefGoogle Scholar
  22. Rea P A. 2006. Phytochelatin synthase, papain’s cousin, in stereo. Proc. Natl. Acad. Sci. USA, 103(3): 507–508, http://dx.doi.org/10.1104/pp.104.048579.CrossRefGoogle Scholar
  23. Romanyuk N D, Rigden D J, Vatamaniuk O K, Lang A, Cahoon R E, Jez J M, Rea P A. 2006. Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase. Plant Physiology, 141(3): 858–869, http://www.ncbi.nlm.nih. gov/pubmed/16714405.CrossRefGoogle Scholar
  24. Ruotolo R, Peracchi A, Bolchi A, Infusini G, Amoresano A, Ottonello S. 2004. Domain organization of phytochelatin synthase: functional properties of truncated enzyme species identified by limited proteolysis. J. Biol. Chem., 279 (15): 14686–14693, http://dx.doi.org/10.1074/jbc.M314325200.CrossRefGoogle Scholar
  25. Taji T, Komatsu K, Katori T, Kawasaki Y, Sakata Y, Tanaka S, Kobayashi M, Toyoda A, Seki M, Shinozaki K. 2010. Comparative genomic analysis of 1047 completely sequenced cDNAs from an Arabidopsis -related model halophyte, Thellungiella halophila. BMC Plant Biology, 10 (1): 261, http://dx.doi.org/10.1186/1471-2229-10-261.CrossRefGoogle Scholar
  26. Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24(8): 1596–1599, http://dx.doi.org/10.1093/molbev/msm092.CrossRefGoogle Scholar
  27. Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk M H, Miyamoto K. 2002. Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem ical and Biophys ical Res earch Commun ications, 293(1): 653–659, http://dx.doi.org/10.1016/S0006-291X(02)00265-6.CrossRefGoogle Scholar
  28. Vatamaniuk O K, Mari S, Lu Y P, Rea P A. 1999. AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc. Natl. Acad. Sci. USA, 96(12): 7110–7115, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC22073/pdf/pq007110.pdf.CrossRefGoogle Scholar
  29. Vestergaard M, Matsumoto S, Nishikori S, Shiraki K, Hirata K, Takagi M. 2008. Chelation of cadmium ions by phytochelatin synthase: role of the cysteine-rich C-terminal. Anal ytical Sci ences, 24(2): 277–281, http://www.ncbi.nlm.nih.gov/pubmed/18270423.CrossRefGoogle Scholar
  30. Wang H C, Wu J S, Chia J C, Yang C C, Wu Y J, Juang R H. 2009. Phytochelatin synthase is regulated by protein phosphorylation at a threonine residue near its catalytic site. J. Agric. Food Chem., 57(16): 7348–7355, http://dx.doi.org/10.1021/jf9020152.CrossRefGoogle Scholar
  31. Wu H F, Liu X L, Zhao J M, Yu J B. 2012. Toxicological responses in halophyte Suaeda salsa to mercury under environmentally relevant salinity. Ecotox icol. Environ. Safe ty, 85: 64–71, http://dx.doi.org/10.1016/j.ecoenv.2012.03.016.CrossRefGoogle Scholar
  32. Xu J, Yin H X, Liu X J, Li X. 2010. Salt affects plant Cd-stress responses by modulating growth and Cd accumulation. Planta, 231(2): 449–459, http://dx.doi.org/10.1007/s00425-009-1070-8.CrossRefGoogle Scholar
  33. Zhang X L. 2001. Investigation of pollution of Pb, Cd, Hg, As in sea water and deposit of Bohai Sea area. Heilongjiang Environ. J., 25(3): 87–90. (in Chinese with English abstract)Google Scholar
  34. Zhou M J, Yan T. 1997. Progress in marine eco-toxicology study in China. Res. Environ. Sci., 10(3): 1–6. (in Chinese with English abstract)Google Scholar
  35. Zhu M H, Ding Y S, Zheng D C, Tao P, Ji Y X, Cui Y, Gong W M, Ding D W. 2005. Accumulation and tolerance of Cu, Zn, Pb and Cd in plant Suaeda heteroptera Kitag in tideland. Marine Environmental Science, 24(2): 13–16, http://europepmc.org/abstract/CBA/599367.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ming Cong (丛明)
    • 1
  • Jianmin Zhao (赵建民)
    • 1
  • Jiasen Lü (吕家森)
    • 2
  • Zhiming Ren (任志明)
    • 2
  • Huifeng Wu (吴惠丰)
    • 1
  1. 1.Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research (YIC)Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCASYantaiChina
  2. 2.Biology School of Yantai UniversityYantaiChina

Personalised recommendations