Advertisement

Chinese Journal of Oceanology and Limnology

, Volume 34, Issue 4, pp 772–780 | Cite as

Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes

  • Xuewei Dong (董学卫)
  • Qingfang He (何庆芳)
  • Zhenying Peng (彭振英)
  • Jinhui Yu (于金慧)
  • Fei Bian (边斐)
  • Youzhi Li (李有志)Email author
  • Yuping Bi (毕玉平)Email author
Biology

Abstract

Genetic modification is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. Synechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid (GLA) and stearidonic acid (SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6D, Syd15D and Syd6Dd15D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in Synechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.

Keywords

Synechococcus sp. PCC7002 Synechocystis sp PCC6803 Δ15 fatty acid desaturase Δ6 fatty acid desaturase polyunsaturated fatty acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakowska-Barczak A M, Schieber A, Kolodziejczyk P. 2009. Characterization of Canadian black currant (Ribes nigrum L.) seed oils and residues. J. Agric. Food Chem., 57 (24): 11528–11536.CrossRefGoogle Scholar
  2. Banz W J, Davis J E, Clough R W, Cheatwood J L. 2012. Stearidonic acid: is there a role in the prevention and management of type 2 diabetes mellitus? J. Nutr., 142 (3): 635S–640S.CrossRefGoogle Scholar
  3. Becker E W. 1994. Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge. 293p.Google Scholar
  4. Bernstein H C, Konopka A, Melnicki M R, Hill E A, Kucek L A, Zhang S Y, Shen G Z, Bryant D A, Beliaev A S. 2014. Effect of mono-and dichromatic light quality on growth rates and photosynthetic performance of Synechococcus sp. PCC 7002. Front Microbiol., 5: 488.CrossRefGoogle Scholar
  5. Bligh E G, Dyer W J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37 (8): 911–917.CrossRefGoogle Scholar
  6. Boyanapalli R, Bullerjahn G S, Pohl C, Croot P L, Boyd P W, McKay R M L. 2007. Luminescent whole-cell cyanobacterial bioreporter for measuring Fe availability in diverse marine environments. Appl. Environ. Microbiol., 73 (3): 1019–1024.CrossRefGoogle Scholar
  7. Chen G, Qu S J, Wang Q, Bian F, Peng Z Y, Zhang Y, Ge H T, Yu J H, Xuan N, Bi Y P, He Q F. 2014. Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803. Biotechnol. Biofuels, 7: 32.CrossRefGoogle Scholar
  8. Davidson M H. 2013. Omega-3 fatty acids: new insights into the pharmacology and biology of docosahexaenoic acid, docosapentaenoic acid, and eicosapentaenoic acid. Curr. Opin. Lipidol., 24 (6): 467–474.CrossRefGoogle Scholar
  9. Davies F K, Work V H, Beliaev A S, Posewitz M C. 2014. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng. Biotechnol., 2: 21.CrossRefGoogle Scholar
  10. Eckert H, La Vallee B, Schweiger B J, Kinney A J, Cahoon E B, Clemente T. 2006. Co-expression of the borage Δ 6 desaturase and the Arabidopsis Δ 15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta, 224 (5): 1050–1057.CrossRefGoogle Scholar
  11. Gallardo M A, Cárcamo J G, Hiller B, Nuernberg G, Nuernberg K, Dannenberger D. 2015. Expression of lipid metabolism related genes in subcutaneous adipose tissue from Chilota lambs grazing on two different pasture types. Eur. J. Lipid Sci. Technol., 117 (1): 23–30, http://dx.doi.org/10.1002/ ejlt.201400033.CrossRefGoogle Scholar
  12. Graham I A, Larson T, Napier J A. 2007. Rational metabolic engineering of transgenic plants for biosynthesis of omega-3 polyunsaturates. Curr. Opin. Biotechnol., 18 (2): 142–147.CrossRefGoogle Scholar
  13. Harris W S. 2012. Stearidonic acid-enhanced soybean oil: a plant-based source of (n-3) fatty acids for foods. J. Nutr., 142 (3): 600S–604S.CrossRefGoogle Scholar
  14. Jacobsen J H, Frigaard N U. 2014. Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab. Eng., 21: 60–70.CrossRefGoogle Scholar
  15. Kenyon C N. 1972. Fatty acid composition of unicellular strains of blue-green algae. J. Bact eriol., 109 (2): 827–834.Google Scholar
  16. Khozin-Goldberg I, Iskandarov U, Cohen Z. 2011. LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl. Microbiol. Biotechnol., 91 (4): 905–915.CrossRefGoogle Scholar
  17. Kim S H, Park J S, Kim S Y, Kim J B, Roh K H, Kim H U, Lee K R, Kim J B. 2014. Functional characterization of polyunsaturated fatty acid delta 6-desaturase and elongase genes from the black seabream (Acanthopagrus schlegelii). Cell Biochem. Biophys., 68 (2): 335–346.CrossRefGoogle Scholar
  18. Lazic M, Inzaugarat M E, Povero D, Zhao I C, Chen M, Nalbandian M, Miller Y I, Cherñ avsky A C, Feldstein A E, Sears D D. 2014. Reduced dietary omega-6 to omega-3 fatty acid ratio and 12/15-lipoxygenase deficiency are protective against chronic high fat diet-induced steatohepatitis. PLoS One, 9 (9): e107658.CrossRefGoogle Scholar
  19. Lee J H, O’Keefe J H, Lavie C J, Harris W S. 2009. Omega-3 fatty acids: cardiovascular benefits, sources and sustainability. Nat. Rev. Cardiol., 6 (12): 753–758.CrossRefGoogle Scholar
  20. Lenihan-Geels G, Bishop K S, Ferguson L R. 2013. Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients, 5 (4): 1301–1315.CrossRefGoogle Scholar
  21. Liu X, Sheng J, Curtiss R III. 2011. Fatty acid production in genetically modified cyanobacteria. Proc. Natl. Acad. Sci. USA, 108(17): 6 899–6 904.CrossRefGoogle Scholar
  22. Maslova I P, Muradyan E A, Lapina S S, Klyachko-Gurvich G L, Los D A. 2004. Lipid fatty acid composition and thermophilicity of cyanobacteria. Russ. J. Plant Physiol., 51(3): 353–360.CrossRefGoogle Scholar
  23. McNeely K, Xu Y, Bennette N, Bryant D A, Dismukes G C. 2010. Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl. Environ. Microbiol., 76 (15): 5032–5038.CrossRefGoogle Scholar
  24. Meesapyodsuk D, Qiu X. 2012. The front-end desaturase: structure, function, evolution and biotechnological use. Lipids, 47 (3): 227–237.CrossRefGoogle Scholar
  25. Möllers K B, Cannella D, Jørgensen H, Frigaard N U. 2014. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol. Biofuels, 7: 64.CrossRefGoogle Scholar
  26. Murata N, Deshnium P, Tasaka Y. 1996. Biosynthesis of gamma-linolenic acid in the cyanobacterium Spirulina platensis, in γ-linolenic acid. In: Huang Y S, Milles D E eds. AOCS Press, Champaign. p.22–32.Google Scholar
  27. Murata N, Wada H. 1995. Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem. J., 308 (1): 1–8.CrossRefGoogle Scholar
  28. Nakamura Y, Kaneko T, Hirosawa M, Miyajima N, Tabata S. 1998. CyanoBase, a www database containing the complete nucleotide sequence of the genome of Synechocystis sp. strain PCC6803. Nucl. Acids Res., 26 (1): 63–67.CrossRefGoogle Scholar
  29. Reddy A S, Nuccio M L, Gross L M, Thomas T L. 1993. Isolation of a Δ 6 -desaturase gene from the cyanobacterium synechocystis sp. strain PCC 6803 by gain-of-function expression in Anabaena sp. strain PCC 7120. Plant Mol. Biol., 22 (2): 293–300.CrossRefGoogle Scholar
  30. Reddy A S, Thomas T L. 1996. Expression of a cyanobacterial Δ 6 -desaturase gene results in γ-linolenic acid production in transgenic plants. Nat. Biotechnol., 14 (5): 639–642.CrossRefGoogle Scholar
  31. Reed D W, Schafer U A, Covello P S. 2000. Characterization of the Brassica napus extraplastidial linoleate desaturase by expression in Saccharomyces cerevisiae. Plant Physiol., 122 (3): 715–720.CrossRefGoogle Scholar
  32. Sato S, Xing A Q, Ye X G, Schweiger B, Kinney A, Graef G, Clemente T. 2004. Production of γ-linolenic acid and stearidonic acid in seeds of marker-free transgenic soybean. Crop Sci., 44 (2): 646–652.CrossRefGoogle Scholar
  33. Sayanova O V, Beaudoin F, Michaelson L V, Shewry P R, Napier J A. 2003. Identification of primula fatty acid delta 6-desaturases with n-3 substrate preferences. FEBS Lett., 542 (1-3): 100–104.CrossRefGoogle Scholar
  34. Simon D, Eng P A, Borelli S, Kägi R, Zimmermann C, Zahner C, Drewe J, Hess L, Ferrari G, Lautenschlager S, Wü thrich B, Schmid-Grendelmeier P. 2014. Gamma-linolenic acid levels correlate with clinical efficacy of evening primrose oil in patients with atopic dermatitis. Adv. Ther., 31 (2): 180–188.CrossRefGoogle Scholar
  35. Stanier R Y, Kunisawa R, Mandel M, Cohen-Bazire G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev., 35 (2): 171–205.Google Scholar
  36. Stevens S E Jr, Patterson C O P, Myers J. 1973. The production of hydrogen peroxide by blue-green algae: a survey. J. Phycol., 9 (4): 427–430.Google Scholar
  37. Takeyama H, Takeda D, Yazawa K, Yamada A, Matsunaga T. 1997. Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp. Microbiology, 143(8): 2 725–2 731.CrossRefGoogle Scholar
  38. Tan L, Meesapyodsuk D, Qiu X. 2011. Molecular analysis of Δ6 desaturase and Δ6 elongase from Conidiobolus obscurus in the biosynthesis of eicosatetraenoic acid, a ω3 fatty acid with nutraceutical potentials. Appl. Microbiol. Biotechnol., 90 (2): 591–601.CrossRefGoogle Scholar
  39. Tasset-Cuevas I, Fernández-Bedmar Z, Lozano-Baena M D, Campos-Sánchez J, de Haro-Bailón A, Muñoz-Serrano A, Alonso-Moraga Á. 2013. Protective effect of borage seed oil and gamma linolenic acid on DNA: in vivo and in vitro studies. PLoS One, 8 (2): e56986.CrossRefGoogle Scholar
  40. Therien J B, Zadvornyy O A, Posewitz M C, Bryant D A, Peters J W. 2014. Growth of Chlamydomonas reinhardtii in acetate-free medium when co-cultured with alginateencapsulated, acetate-producing strains of Synechococcus sp. PCC 7002. Biotechnol. Biofuels, 7: 154.CrossRefGoogle Scholar
  41. Ursin V M. 2003. Modification of plant lipids for human health: development of functional land-based omega-3 fatty acids. J. Nutr., 133 (12): 4271–4274.Google Scholar
  42. Wang H S, Yu C, Tang X F, Zhu Z J, Ma N N, Meng Q W. 2014. A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress. Plant Cell Rep., 33 (1): 131–142.CrossRefGoogle Scholar
  43. Yu C H, Wang H S, Yang S, Tang X F, Duan M, Meng Q W. 2009. Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato. Plant Physiol. Biochem., 47 (11-12): 1 102–1 112.CrossRefGoogle Scholar
  44. Zhang M, Barg R, Yin M G, Gueta-Dahan Y, Leikin-Frenkel A, Salts Y, Shabtai S, Ben-Hayyim G. 2005. Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J., 44 (3): 361–371.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xuewei Dong (董学卫)
    • 1
  • Qingfang He (何庆芳)
    • 2
    • 3
  • Zhenying Peng (彭振英)
    • 2
  • Jinhui Yu (于金慧)
    • 2
  • Fei Bian (边斐)
    • 2
  • Youzhi Li (李有志)
    • 1
    Email author
  • Yuping Bi (毕玉平)
    • 2
    Email author
  1. 1.College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi UniversityNanningChina
  2. 2.Biotechnology Research Center, Shandong Academy of Agricultural Science, Key Laboratory for Genetic Improvement of Crop, Animal and Poultry of Shandong Province, Key Laboratory of Crop Genetic Improvement and Biotechnology, HuanghuaihaiMinistry of AgricultureJinanChina
  3. 3.Department of Applied ScienceUniversity of ArkansasLittle RockUSA

Personalised recommendations