Advertisement

Chinese Journal of Oceanology and Limnology

, Volume 34, Issue 5, pp 1085–1096 | Cite as

Compound-specific isotopes of fatty acids as indicators of trophic interactions in the East China Sea ecosystem

  • Ying Wu (吴莹)Email author
  • Na Wang (王娜)
  • Jing Zhang (张经)
  • Ruijing Wan (万瑞景)
  • Fangqun Dai (戴芳群)
  • Xianshi Jin (金显仕)
Chemistry

Abstract

The composition and compound-specific isotopes of fatty acids were studied within food webs in the East China Sea. Lipid-normalized stable carbon isotopes of total organic carbon had a good correlation with trophic level. Variations in fatty acid compositions among diff erent species were observed but were unclear. Diff erent dietary structures could be traced from molecular isotopes of selected fatty acids in the Shiba shrimp (Matapenaeus joyneri), the coastal mud shrimp (Solenocera crassicornis) and the northern Maoxia shrimp (Acetes chinensis). Both M. joyneri and S. crassicornis are mainly benthos feeders, while A. chinensis is a pelagic species, although they have a similar fatty acid composition. There was a good correlation for isotopes of arachidonic acid (C20:4n6; ARA) and docosahexaenoic acid (C22:6n3; DHA) among pelagic species from higher trophic levels. The isotopic compositions of DHA in benthic species were more negative than those of pelagic species at the same trophic level. The fact that the diet of benthic species contains more degraded items, the carbon isotopes of which are derived from a large biochemical fraction, may be the reason for this variation. A comparative study of benthic and pelagic species demonstrated the diff erent carbon sources in potential food items and the presence of a more complex system at the water-sediment interface.

Keywords

fatty acid compound-specific isotope ratio stable isotope ratio East China Sea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfaro A C, Thomas F, Sergent L, Duxbury M. 2006. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Estu., Coast. Shelf Sci., 70(1–2): 271–286.CrossRefGoogle Scholar
  2. Alfaro A C. 2008. Diet of Littoraria scabra, while vertically migrating on mangrove trees: gut content, fatty acid, and stable isotope analyses. Estu. Coast. Shelf Sci., 79(4): 718–726.CrossRefGoogle Scholar
  3. Arts M T, Wainman B C. 1999). Lipids in Freshwater Ecosystems. Springer-Verlag, New York. 319p.Google Scholar
  4. Auel H, Harjes M, da Rocha R, Stübing D, Hagen W. 2002. Lipid biomarkers indicate different ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar. Biol., 2 5: 347–358.Google Scholar
  5. Ballentine D C, Macko S A, Turekian V C, Gilhooly W P, Martincigh B. 1996. Compound specific isotope analysis of fatty acids and polycyclic aromatic hydrocarbons in aerosols: implications for biomass burning. Org. Geochem., 25(1–2): 97–104.CrossRefGoogle Scholar
  6. Bell J G, Sargent J R. 2003. Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture, 218(1–4): 491–499.CrossRefGoogle Scholar
  7. Budge S M, Iverson S J, Koopman H N. 2006. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. Mamm. Sci., 22(4): 759–801.CrossRefGoogle Scholar
  8. Budge S M, Wooller M J, Springer A M, Iverson S J, Mc Roy C P, Divoky G J. 2008. Tracing carbon flow in an arctic marine food web using fatty acid stable isotope analysis. Oecologia, 157(1): 117–129.CrossRefGoogle Scholar
  9. Cai D L, Li H Y, Tang Q S, Sun Y. 2005. Establishment of trophic continuum in the food web of the Yellow Sea and East China Sea ecosystem: insight from carbon and nitrogen stable isotopes. Science in China Series C: Life Sciences, 48(6): 531–539.CrossRefGoogle Scholar
  10. Cartes J E, Madurell T, Fanelli E, López-Jurado J L. 2008. Dynamics of suprabenthos-zooplankton communities around the Balearic Islands (NW Mediterranean): influence of environmental variables and effects on the biological cycle of Aristeus antennatus. J. Mar. Syst., 71(3–4): 316–335.CrossRefGoogle Scholar
  11. Cartes J E. 2011. Temporal changes in lipid biomarkers, especially fatty acids, of the deep-sea crustaceans Boreomysis arctica and Nematoscelis megalops: implications of their biological cycle and habitat near the seabed. J. Mar. Biol. Asso c. U. K., 91(4): 783–792.CrossRefGoogle Scholar
  12. Cheng J Y, Ding F Y, Li S F, Yang L P, Li J S, Liang Z L. 2006. Changes of fish community structure of the coastal zone of northern part of East China Sea in summer. J. Natur. Res., 21(5): 775–781. (in Chinese with English abstract)Google Scholar
  13. Choy E J, An S, Kang C K. 2008. Pathways of organic matter through food webs of diverse habitats in the regulated Nakdong River estuary (Korea). Estu., Coast. Shelf Sci., 78(1): 215–226.CrossRefGoogle Scholar
  14. Cook H W. 1996). Fatty acid desaturation and chain elongation in eukaryotes. In: Vance D E, Vance J E eds. Biochemistry of Lipids, Lipoproteins and Membranes. Elsevier, Amsterdam. p.129-152.Google Scholar
  15. Countway R E, Canuel E A, Dickhut R M. 2007. Sources of particulate organic matter in surface waters of the York River, VA estuary. Org. Geochem., 38(3): 365–379.CrossRefGoogle Scholar
  16. Dahl T M, Falk-Petersen S, Gabrielsen G W, Sargent J R, Hop H, Millar R M. 2003. Lipids and stable isotopes in common eider, black-legged kittiwake and northern fulmar: a trophic study from an Arctic fjord. Mar. Ecol. Prog. Ser., 256: 257–269.CrossRefGoogle Scholar
  17. Dalsgaard J, John M, Kattner G, Müller- Navarra D, Hagen W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol., 46: 225–340.CrossRefGoogle Scholar
  18. Deng J Y, Meng T X, Ren S M. 1986. Food web of fishes in Bohai Sea. Acta Ecologica Sinica, 6(4): 356–364. (in Chinese with English abstract)Google Scholar
  19. Dou S Z. 1996. Feeding ecology of fish-a critical review on theories, methods and their application. Oceanologia et Limnologia Sinica, 27(5): 556–561. (in Chinese with English abstract)Google Scholar
  20. Fanelli E, Cartes J E, Rumolo P, Sprovieri M. 2009. Food-web structure and trophodynamics of mesopelagicsuprabenthic bathyal macrofauna of the Algerian Basin based on stable isotopes of carbon and nitrogen. Deep Sea Research Part I: Oceanographic Research Papers, 156(9): 1504–1520.CrossRefGoogle Scholar
  21. Fantle M S, Dittel A I, Schwalm S M, Epifanio C E, Fogel M L. 1999. A food web analysis of the juvenile blue crab, Callinectes sapidus: using stable isotopes in whole animals and individual amino acids. Oecologia, 120(3): 416–426.CrossRefGoogle Scholar
  22. Folch J, Lees M, Sloane Stanley G H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Bio l. Chem., 226(1): 497–509.Google Scholar
  23. Fukuda Y, Naganuma T. 2001. Potential dietary effects on the fatty acid composition of the common jellyfish Aurelia aurita. Mar. Biol., 138(5): 1029–1035.CrossRefGoogle Scholar
  24. Gannes L Z, O’Brien D M, del Rio C M. 1997. Stable isotopes in animal ecology: assumptions, caveats and a call for more laboratory experiments. Ecology, 78(4): 1271–1276.CrossRefGoogle Scholar
  25. Goñi M A, Eglinton T I. 1996. Stable carbon isotopic analyses of lignin-derived CuO oxidation products by isotope ratio monitoring-gas chromatography-mass spectrometry (irm-GC-MS). Org. Geochem., 24(6-7): 601–615.CrossRefGoogle Scholar
  26. Graeve M, Kattner F, Wiencke C, Karsten U. 2002. Fatty acid composition of Arctic and Antarctic macroalgae: indicator of phylogenetic and trophic relationships. Mar. Ecol. Prog. Ser., 231: 67–74.CrossRefGoogle Scholar
  27. Hughes A R, Bando K J, Rodriguez L F, Williams S L. 2004. Relative effects of grazers and nutrients on seagrasses: a meta-analysis approach. Mar. Ecol. Prog. Ser., 282: 87–99.CrossRefGoogle Scholar
  28. Iverson S J, Field C, Bowen W D, Blanchard W. 2004. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr., 74(2): 211–235.CrossRefGoogle Scholar
  29. Iverson S J, Frost K J, Lang S L C. 2002. Fat content and fatty acid composition of forage fish and invertebrates in Prince William Sound, Alaska: factors contributing to among and within species variability. Mar. Ecol. Prog. Ser., 241: 161–181.CrossRefGoogle Scholar
  30. Iverson S J. 2009. Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In: Kainz M, Brett M T, Arts M T eds. Lipids in Aquatic Ecosystems. Springer-Verlag, New York. p.281–306.CrossRefGoogle Scholar
  31. Jaeger A J, Connan M, Richard P, Cherel Y. 2010. Use of stable isotopes to quantify seasonal changes of trophic niche and levels of population and individual specialisation in seabirds. Mar. Ecol. Pro. Ser., 401: 269–277.CrossRefGoogle Scholar
  32. Jim S, Ambrose S H, Evershed R P. 2003. Natural abundance stable carbon isotope evidence for the routing and de novo synthesis of bone FA and cholesterol. Lipids, 38(2): 179–186.CrossRefGoogle Scholar
  33. Jin X S, Xu B, Tang Q S. 2003. Fish assemblage structure in the East China Sea and southern Yellow Sea during autumn and spring. J. Fish Biol., 62(5): 1194–1205.CrossRefGoogle Scholar
  34. Kainz M, Arts M T, Mazumder A. 2004. Essential fatty acids in the planktonic food web and their ecological role for the higher trophic levels. Limno. Oceanogr., 49(5): 1784–1793.CrossRefGoogle Scholar
  35. Kim J Y, Kang Y S, Oh H J, Suh Y S, Hwang J D. 2005. Spatial distribution of early life stages of Japanese anchovy (Engraulis japonicus) and hairtail (Trichiurus lepturus) and their relationship with oceanographic features of the East China Sea during the 1997-1998 El Niño Event. Estua., Coast. Shelf Sci., 63(1–2): 13–21.CrossRefGoogle Scholar
  36. Leaf A. 1993. Omega-3 PUFA, an update: 1986-1993. Omega -3 News 1 /93., 8: 1–4.Google Scholar
  37. Li S F, Yan L P, Li C S, Hu F. 2004. The analysis of fish composition pattern in the northern East China Sea. J. Fish. China, 28(4): 384–392. (in Chinese with English abstract)Google Scholar
  38. Lin L S. 2007. Study on feeding habit and trophic level of redlip croaker in Changjiang esturary. Mar. Fish., 29(1): 44–48.Google Scholar
  39. McCutchan J H, Lewis W M, Kendall C, McGrath C C. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen and sulfur. Oikos, 102(2): 378–390.CrossRefGoogle Scholar
  40. Meier-Augenstein W. 2002. Stable isotope analysis of fatty acids by gas chromatography-isotope ratio mass spectrometry. Anal. Chem. Acta, 465(1–2): 63–79.CrossRefGoogle Scholar
  41. Michener R H, Schell D M. 1994. Stable isotope ratios as tracers in marine aquatic food webs. In: Lajtha K, Michener R H eds. Stable Isotopes in Ecology and Environmental Sciences. Blackwell, Oxford. p.138–157.Google Scholar
  42. Müller-Navarra D C, Brett M T, Liston A M, Goldman C R. 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature, 403(6765): 74–77.CrossRefGoogle Scholar
  43. Pearson S F, Levey D J, Greenberg C H, del Rio C M. 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia, 135(4): 516–523.CrossRefGoogle Scholar
  44. Peterson B J, Fry B. 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Sys t., 18(1): 293–320.CrossRefGoogle Scholar
  45. Phillips D L, Gregg J W. 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136(2): 261–269.CrossRefGoogle Scholar
  46. Phillips D L, Newsome S D, Gregg J W. 2005. Combining sources in stable isotope mixing models: alternative methods. Oecologia, 144(4): 520–527.CrossRefGoogle Scholar
  47. Post D M. 2002. Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology, 83(3): 703–718.CrossRefGoogle Scholar
  48. Ruess L, Tiunov A, Haubert D, Richnow H H, Häggblom M M, Scheu S. 2005. Carbon stable isotope fractionation and trophic transfer of fatty acids in fungal based soil food chains. Soil Biol. Biochem., 37(5): 945–953.CrossRefGoogle Scholar
  49. Saito H, Kotani Y, Keriko J M, Xue C H, Taki K, Ishihara K, Ueda T, Miyata S. 2002. High levels of n-3 polyunsaturated fatty acids in Euphausia pacifica and its role as a source of docosahexaenoic and icosapentaenoic acids for higher trophic levels. Mar. Chem., 78(1): 9–28.CrossRefGoogle Scholar
  50. Sargent J R, Henderson R J. 1986. Lipids. In: Corner E D S, O’Hara S C M eds. The Biological Chemistry of Marine Copepods Clarendon Press, Oxford. p.59–108.Google Scholar
  51. Sprecher H. 2000. Metabolism of highly unsaturated n-3 and n -6 fatty acids. Biochim. Biophys. Acta, 1486(2–3): 219–231.CrossRefGoogle Scholar
  52. Tang Q S. 1999. Strategies of research on marine food web and trophodynamics between high trophic levels. Mar. Fish. Res., 20(2): 1–6. (in Chinese with English abstract)Google Scholar
  53. Teece M A, Fogel M L, Dollhopf M E, Nealson K H. 1999. Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions. Org. Geochem., 30(12): 1571–1579.CrossRefGoogle Scholar
  54. vander Zander M J, Rasmussen J B. 2001. Variation in d 15 N and d 13 C trophic fractionation: implications for aquatic food web studies. Limno Oceanogr., 46(8): 2061–2066.CrossRefGoogle Scholar
  55. Wan R J, Wu Y, Huang L, Zhang J, Gao L, Wang N. 2010. Fatty acids and stable isotopes of a marine ecosystem: study on the Japanese anchovy (Engraulis japonicus) food web in the Yellow Sea. Deep Sea Res., 57(11–12): 1047–1057.CrossRefGoogle Scholar
  56. Wang N, Wu Y, Zhang J. 2009. Comparison and unification of carbon stable isotope ratios in specific aquatic biota. Commun. Nonlinear Sci. Numer. Simulat., 14(5): 2502–2506.CrossRefGoogle Scholar
  57. Wei S, Jiang W. 1992. Study on food web of fishes in the Yellow Sea. Oceanologia et Limnologia Sinica, 23(2): 182–192. (in Chinese with English abstract)Google Scholar
  58. Zhang B, Tang Q S, Jin X S. 2007. Functional groups of fish assemblages and their major species at high trophic level in the East China Sea. J. Fish. Sci. China, 14(6): 939–949. (in Chinese with English abstract)Google Scholar
  59. Zhang B, Tang Q S. 2004. Study on trophic level of important resources species at high trophic levels in the Bohai Sea, Yellow Sea and East China Sea. Advances in Marine Science, 22(4): 393–404. (in Chinese with English abstract)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ying Wu (吴莹)
    • 1
    Email author
  • Na Wang (王娜)
    • 1
    • 2
  • Jing Zhang (张经)
    • 1
  • Ruijing Wan (万瑞景)
    • 3
  • Fangqun Dai (戴芳群)
    • 3
  • Xianshi Jin (金显仕)
    • 3
  1. 1.State Key Laboratory of Estuarine and Coastal ResearchEast China Normal UniversityShanghaiChina
  2. 2.Tianjin Airport Economic AreaTianjinChina
  3. 3.Key Laboratory for Sustainable Utilization of Marine Fisheries Resource, Ministry of Agriculture, Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina

Personalised recommendations