Chinese Journal of Oceanology and Limnology

, Volume 33, Issue 6, pp 1368–1377 | Cite as

Does salinity change determine zooplankton variability in the saline Qarun Lake (Egypt)?

  • Gamal M. El-Shabrawy
  • Elena V. Anufriieva
  • Mousa O. Germoush
  • Mohamed E. Goher
  • Nickolai V. ShadrinEmail author


Zooplankton and 14 abiotic variables were studied during August 2011 at 10 stations in Lake Qarun, Egypt. Stations with the lowest salinity and highest nutrient concentrations and turbidity were close to the discharge of waters from the El-Bats and El-Wadi drainage systems. A total of 15 holozooplankton species were identified. The salinity in Lake Qarun increased and fluctuated since 1901: 12 g/L in 1901; 8.5 g/L in 1905; 12.0 g/L in 1922; 30.0 g/L in 1985; 38.7 g/L in 1994; 35.3 g/L in 2006, and 33.4 g/L in 2011. The mean concentration of nutrients (nitrate, nitrite and orthophosphate) gradually increased from 35, 0.16 and 0.38 µg/L, respectively, in 1953–1955 to 113, 16.4, and 30.26 µg/L in 2011. From 1999–2003 some decrease of species diversity occurred. Average total zooplankton density was 30 000 ind./m3 in 1974–1977; 356 125 ind./m3 in 1989; 534 000 ind./m3 in 1994–1995; from 965 000 to 1 452 000 ind./m3 in 2006, and 595 000 ind./m3 in 2011. A range of long-term summer salinity variability during the last decades was very similar to a range of salinity spatial variability in summer 2011. There is no significant correlation between zooplankton abundance and salinity in spatial and long-term changes. We conclude that salinity fluctuations since at least 1955 did not directly drive the changes of composition and abundance of zooplankton in the lake. A marine community had formed in the lake, and it continues to change. One of the main drivers of this change is a regular introduction and a pressure of alien species on the existent community. Eutrophication also plays an important role. The introduction of Mnemiopsis leidyi, first reported in 2014, may lead to a start of a new stage of the biotic changes in Lake Qarun, when eutrophication and the population dynamics of this ctenophore will be main drivers of the ecosystem change.


saline lake Copepoda Rotifera Mnemiopsis leidyi alien species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbaspour M, Javid A H, Mirbagheri S A, Ahmadi G F, Moghimi P. 2012. Investigation of lake drying attributed to climate change. Int. J. Environ. Sci. Technol., 9 (2): 257–266.CrossRefGoogle Scholar
  2. Abd Ellah R G. 2009. Outlook on past, present and future status of water salinity in Lake Qarun, Egypt. World J. Fish Mar. Sci., 1 (1): 51–55.Google Scholar
  3. Abdel-Malek S A, Ishak M M. 1980. Some ecological aspects of Lake Qarun, Fayoum, Egypt. Part II. Production of plankton and benthic organisms. Hydrobiologia, 75 (3): 201–208.CrossRefGoogle Scholar
  4. Abdel-Satar A M, Goher M E, Sayed M F. 2010. Recent environmental changes in water and sediment quality of Lake Qarun, Egypt. J. Fish. Aquat. Sci., 5 (2): 56–69.CrossRefGoogle Scholar
  5. Abou El-Geit E N, Saad T T, Abdo M H, Mona S Z. 2013. Microbial infections among some fishes and crustacean species during blooming phenomenon in Qaroun Lake- Egypt. Life Sci. J., 10 (2): 1217–1224.Google Scholar
  6. Ahmed N K. 1994. Ecological Studies on Zooplankton in Lake Qarun, Fayum Egypt. MSc. thesis. Cairo University, Cairo.Google Scholar
  7. Ali M H. 2002. Impact of Agricultural and Sewage Effluents on the Ecosystem of Lake Qarun, Egypt. PhD thesis. Al- Azhar University, Cairo.Google Scholar
  8. Amarouayache M, Derbal F, Kara M H. 2012. Note on the carcinological fauna associated with Artemia salina (Branchiopoda, Anostraca) from Sebkha Ez-Zemoul (northeast Algeria). Crustaceana, 85 (2): 129–137.CrossRefGoogle Scholar
  9. Anneville O, Molinero J C, Souissi S, Balvay G, Gerdeaux D. 2007. Long-term changes in the copepod community of Lake Geneva. J. Plankton Res., 29 (Suppl. 1): i49–i59.CrossRefGoogle Scholar
  10. APHA (American Public Health Association). 1995. Standard Methods for the Examination of Water and Wastewater. 19 th edn. APHA Publication Office, Washington.Google Scholar
  11. Baioumy H M, Kayanne H, Tada R. 2010. Reconstruction of lake-level and climate changes in Lake Qarun, Egypt, during the last 7 000 years. J. Great Lakes Res., 36 (2): 318–327.CrossRefGoogle Scholar
  12. Ball J. 1939. Contributions to the Geography of Egypt. Government Press, Cairo. 126p. (reprinted 1952 by Survey of Egypt, Cairo).Google Scholar
  13. Dowidar N M, El-Nady F E. 1982. Chemical composition of invertebrate animals from Lake Qarun (Upper Egypt), l- Acartia latisetosa (Kriczaguin) (Copepoda, Crustacea). Bull. Inst. Oceanogr. Fish., 8 (2): 239–256.Google Scholar
  14. Dowidar N M. 1981. Zooplankton biomass of Lake Qarun (Upper Egypt). Rapp. Comm. Int. Mer Médit., 27 (7): 69–71.Google Scholar
  15. El Shabrawy G M, Belmonte G. 2004. Abundance and affirmation of Paracartia latisetosa (Copepoda, Calanoida) in the inland Lake Qarun (Egypt). Thalassia Salentina, 27: 151–160.Google Scholar
  16. El Shabrawy G M, Dumont H J. 2009. The Fayum depression and its lakes. In: Dumont H J ed. The Nile: Origin, Environments, Limnology and Human Use. Springer, Dordrecht. p.95–124.CrossRefGoogle Scholar
  17. El-Shabrawy G M. 2001. Ecological studies on Rotifera in Lake Qarun, El-Fayoum, Egypt. J. Egypt. Acad. Soc. Env iron. Dev. (B - Aquaculture), 2: 1–18.Google Scholar
  18. EMISAL (Egyptian Company of Salts and Minerals). 1996. Qarun Lake, a base for an advanced chemical industry complex, investment opportunities based on salt extraction from Lake Qarun and the integrated industries based on it. Egyptian Salts and Minerals Co. Ltd., London.Google Scholar
  19. Gannon J E, Stemberger R S. 1978. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans. Am. Microsc. Soc., 97 (1): 16–35.CrossRefGoogle Scholar
  20. García C M, Niell F X. 1993. Seasonal change in a saline temporary lake (Fuente de Piedra, southern Spain). Hydrobiologia, 267 (1-3): 211–223.CrossRefGoogle Scholar
  21. Girgis A M. 1980. Investigation of level and effects of pollutants on saline lakes and littoral marine environment. Part II: Hydrography of Lake Qarun, Scientific Report, Academy of Scientific Research and Technology. Institute of Oceanography and Fisheries, Cairo.Google Scholar
  22. Girgis R B. 1959. Ökologische Untersuchungen in Lake Qarun (Ägypten). MSc thesis. Kiel Universität, Kiel.Google Scholar
  23. Goldman J C. 1972. The effect of inorganic carbon on eutrophication. In: Brown R L, Tunzi M G eds. Proceedings of Seminar on Eutrophication and Biostimulation. California Department of Water Resources, San Francisco. p.3–53.Google Scholar
  24. Gomoiu M T, Alexandrov B, Shadrin N, Zaitsev Y. 2002. The Black Sea-a recipient, donor and transit area for alien species. In: Leppakoski E, Gollasch S, Olenin S eds. Invasive Aquatic Species of Europe. Distribution, Impacts and Management. Springer, Dordrecht. p.341–350.CrossRefGoogle Scholar
  25. Hassan F A. 1986. Holocene lakes and prehistoric settlements of the western Fayum, Egypt. J. Archaeol. Sci., 13 (5): 483–501.CrossRefGoogle Scholar
  26. Ishak M M, Abdel-Malek S A. 1980. Some ecological aspects of Lake Qarun, Fayoum, Egypt. Part I: Physico-chemical environment. Hydrobiologia, 74 (2): 173–178.Google Scholar
  27. Khalifa N, El-Shabrawy G M. 2007. Abundance and diversity of zooplankton in Lake Qarun, Egypt. J. Egypt. Acad. Soc. Environ. Dev., 8: 17–25.Google Scholar
  28. Mageed A A A. 2005. The effect of some environmental factors on zooplankton community biodiversity in Lake Qarun, Egypt. Afr. J. Aquat. Sci., 30 (2): 195–200.CrossRefGoogle Scholar
  29. Mansour S A, Sidky M M. 2003. Ecotoxicological Studies. 6. The first comparative study between Lake Qarun and Wadi El-Rayan wetland (Egypt), with respect to contamination of their major components. Food Chem., 82 (2): 181–189.CrossRefGoogle Scholar
  30. McElroy M, Baker D J. 2012. Climate extremes: recent trends with implications for national security. Vermont J. Environ. Law, 15: 721–743. Scholar
  31. Meshram C B. 2005. Zooplankton biodiversity in relation to pollution of Lake Wadali, Amaravathi. J. Ecotoxol. Environ. Monit., 15: 55–59.Google Scholar
  32. Müller P H, Neuman P, Storm R. 1979. Tafeln der mathematischen Statistik. VEB Fachbuchverlag, Leipzig. 272p.Google Scholar
  33. Naguib M. 1958. Studies on the ecology of Lake Qarun (Fayum, Egypt). Part I. Kieler Meer e sforsch., 14:187–222.Google Scholar
  34. Naguib M. 1961. Studies on the ecology of Lake Qarun (Fayum, Egypt). Part II. Kieler Meeresforsch., 17:94–131.Google Scholar
  35. Nicoll K. 2004. Recent environmental change and prehistoric human activity in Egypt and Northern Sudan. Quatern. Sci. Rev., 23 (5-6): 561–580.CrossRefGoogle Scholar
  36. O’Reilly C M, Alin S R, Plisnier P D, Cohen A S, Mc Kee B A. 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature, 424 (6950): 766–768.CrossRefGoogle Scholar
  37. Premazzi G, Chiaudani G. 1992. Current approaches to assess water quality in lakes. In: Neuman P J, Piavaux M A, Sweeting R A eds. River Water Quality: Ecological Assessment and Control. European Commission, Luxembourg. p.249–308.Google Scholar
  38. Rokneddine A, Chentoufi M. 2004. Study of salinity and temperature tolerance limits regarding four crustacean species in a temporary salt water swamp (Lake Zima, Morocco). Animal Biol., 54 (3): 237–253.CrossRefGoogle Scholar
  39. Sabae S Z, Ali M H. 2004. Distribution of nitrogen cycle bacteria in relation to physico-chemical conditions of a closed saline lake (Lake Qarun, Egypt). J. Egypt. Acad. Soc. Environ. Dev., 5: 145–167.Google Scholar
  40. Sánchez M I, Green A J, Amat F, Castellanos E M. 2007. Transport of brine shrimps via the digestive system of migratory waders: dispersal probabilities depend on diet and season. Mar. Biol., 151 (4): 1407–1415.CrossRefGoogle Scholar
  41. Shadrin N V, Anufriieva E V. 2013a. Dependence of Arctodiaptomus salinus (Calanoida, Copepoda) halotolerance on exoosmolytes: new data and a hypothesis. J. Medit. Ecol., 12: 21–26.Google Scholar
  42. Shadrin N V, Anufriieva E V. 2013b. Climate change impact on the marine lakes and their Crustaceans: the case of marine hypersaline Lake Bakalskoye (Ukraine. Turk. J. Fish. Aquat. Sci., 13: 603–611.Google Scholar
  43. Shadrin N V. 2013. Alternative stable states of lake ecosystems and critical salinities: is there a rigid connection? Proc. Zool. Inst., (3): 214–221. (in Russian)Google Scholar
  44. Shafei A. 1960. Lake Moeris and Lahun Mi-wer and Ro-hun: the great Nile control project executed by the ancient Egyptians. Bull. Soc. G é ograph. Égypte, 33: 187–215.Google Scholar
  45. Siliem T A A. 1993. Impact of drainage water on the water quality of Quaron saline Lake, I. Environmental survey. Bull. Fac. Sci. Zagazig Univ., 15 (2): 122–146.Google Scholar
  46. Smol J P, Wolfe A P, Birks H J B et al. 2005. Climate-driven regime shifts in the biological communities of arctic lakes. Proc. Natl. Acad. Sci. USA, 102 (12): 4397–4402.CrossRefGoogle Scholar
  47. Sokal R R, Rohlf F J. 1995. Biometry: The Principles and Practice of Statistics in Biological Research. 3 rd edn. Freeman, New York. 849p.Google Scholar
  48. Soliman G F. 1990. Observations on some physical conditions of Lake Qarun. In: El-Raey M ed. Regional Symposium of Environmental Studies (UNARC). University of Alexandria, Alexandria. p.588–601.Google Scholar
  49. Williams W D. 1998. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia, 381 (1-3): 191–201.CrossRefGoogle Scholar
  50. Wimpenny R, Titterington E T. 1936. The tow net-plankton of Lake Qarun, Egypt. Dec., 1930 to Dec., 1931. Notes and Memoirs, Fish eries Res earch Dir ectorate, 14: 57.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Gamal M. El-Shabrawy
    • 1
  • Elena V. Anufriieva
    • 2
    • 3
  • Mousa O. Germoush
    • 4
  • Mohamed E. Goher
    • 1
  • Nickolai V. Shadrin
    • 2
    • 3
    Email author
  1. 1.National Institute of Oceanography and FisheriesFish Research Station, El - Khanater, El - KhairiaCairoEgypt
  2. 2.MLR Key Laboratory of Saline Lake Resources and EnvironmentsInstitute of Mineral ResourcesBeijingChina
  3. 3.Institute of Biology of the Southern SeasSevastopolRussia
  4. 4.Biology Department, College of ScienceAl Jouf UniversitySakakaSaudi Arabia

Personalised recommendations