Chinese Journal of Oceanology and Limnology

, Volume 33, Issue 4, pp 1072–1084 | Cite as

A method for correcting regional bias in SMOS global salinity products

  • Xiaolin Tong (佟晓林)
  • Zhenzhan Wang (王振占)
  • Qingxia Li (李青侠)
Physics
  • 56 Downloads

Abstract

Soil Moisture and Ocean Salinity (SMOS) Level 3 (L3) sea surface salinity (SSS) products are provided by the Barcelona Expert Centre (BEC). Strong biases were observed on the SMOS SSS products, thus the data from the Centre Aval de Traitement des Données SMOS (CATDS) were adjusted for biases using a large-scale correction derived from observed differences between the SMOS SSS and World Ocean Atlas (WOA) climatology data. However, this large-scale correction method is not suitable for correcting the large gradient of salinity biases. Here, we present a method for the correction of SSS regional bias of the monthly L3 products. Based on the stable characteristics of the large SSS biases from month to month in some regions, corrected SMOS SSS maps can be obtained from the monthly mean values after removing the regional biases. The accuracy of the SMOS SSS measurements is greatly improved, especially near the coastline, at high latitudes, and in some open ocean regions. The SMOS and ISAS SSS data are also compared with Aquarius SSS to verify the corrected SMOS SSS data. The correction method presented here only corrects annual mean biases. The measurement accuracy of the SSS may be improved by considering the influence of atmospheric and ocean circulation in different seasons and years.

Keyword

ocean salinity microwave radiometry sea surface Soil Moisture and Ocean Salinity (SMOS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks C J, Gommenginger C P, Srokosz M A, Snaith H M. 2012. Validating SMOS ocean surface salinity in the Atlantic with Argo and operational ocean model data. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1 688–1 702.CrossRefGoogle Scholar
  2. Boutin J, Martin N, Reverdin G, Yin X B, Gaillard F. 2012. Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain. Ocean Science, 9: 3 331–3 357.Google Scholar
  3. Chelton D B, Freilich M H. 2005. Scatterometer-based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models. Monthly Weather Review, 133(2): 409–429.CrossRefGoogle Scholar
  4. De Roo R D, Misra S. 2008. A Demonstration of the effects of digitization on the calculation of kurtosis for the detection of RFI in microwave radiometry. IEEE Transactions on Geoscience and Remote Sensing, 46(10): 3 129–3 136.CrossRefGoogle Scholar
  5. Drucker R, Riser S C. 2014. Validation of Aquarius sea surface salinity with Argo: analysis of error due to depth of measurement and vertical salinity stratification. Journal of Geophysical Research: Oceans, 119(7): 4 626–4 637.Google Scholar
  6. Font J, Boutin J, Reul N, Spurgeon P, Ballabrera-Poy J, Chuprin A, Hénocq C, Lavender S, Martin N, Martínez J, McCulloch M, Meirold-Mautner I, Mugerin C, Petitcolin F, Portabella M, Sabia R, Talone M, Tenerelli J, Turiel A, Vergely J L, Waldteufel P, Yin X B, Zine S, Delwart S. 2013. SMOS first data analysis for sea surface salinity determination. International Journal of Remote Sensing, 34(9–10): 3 654–3 670.CrossRefGoogle Scholar
  7. Font J, Camps A, Borges A, Martin-Neira M, Boutin J, Reul N, Kerr Y H, Hahne A, Mecklenburg S. 2010. SMOS: the challenging sea surface salinity measurement from space. Proceedings of the IEEE, 98(5): 649–665.CrossRefGoogle Scholar
  8. Font J, Lagerloef G S E, Le Vine D M, Camps A, Zanife O Z. 2004. The determination of surface salinity with the European SMOS space mission. IEEE Transactions on Geoscience and Remote Sensing, 42(10): 2 196–2 205.CrossRefGoogle Scholar
  9. Gaillard F, Autret E, Thierry V, Galaup P, Coatanoan C, Loubrieu T. 2009. Quality control of large argo datasets. Journal of Atmospheric Oceanic Technology, 26(2): 337–357.CrossRefGoogle Scholar
  10. Gourrion J, Sabia R, Portabella M, Tenerelli J, Guimbard S, Camps A. 2012. Characterization of the SMOS instrumental error pattern correction over the ocean. IEEE Geoscience and Remote Sensing Letters, 9(4): 793–797.CrossRefGoogle Scholar
  11. Guimbard S, Gourrion J, Portabella M, Turiel A, Gabarró C, Font J. 2012. SMOS semi-empirical ocean forward model adjustment. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1 676–1 687.CrossRefGoogle Scholar
  12. Hernandez O, Boutin J, Kolodziejczyk N, Reverdin G, Martin N, Gaillard F, Reul N, Vergely J L. 2014. SMOS salinity in the subtropical north Atlantic salinity maximum: 1. Comparison with Aquarius and in situ Salinity. Journal of Geophysical Research: Oceans, Published Online First, 26 December 2014. http://dx.doi.org/10.1002/2013JC009610.Google Scholar
  13. Kainulainen J, Colliander A, Closa J, Martin-Neira M, Oliva R, Buenadicha G, Rubiales A P, Hakkarainen A, Hallikainen M T. 2012. Radiometric performance of the SMOS reference radiometers—assessment after one year of operation. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1 367–1 383.CrossRefGoogle Scholar
  14. Kerr Y H, Waldteufel P, Wigneron J P, Delwart S, Cabot F, Boutin J, Escorihuela M J, Font J, Reul N, Gruhier C, Juglea S E, Drinkwater M R, Hahne A, Martin-Neira M, Mecklenburg S. 2010. The SMOS mission: new tool for monitoring key elements of the global water cycle. Proceedings of the IEEE, 98(5): 666–687.CrossRefGoogle Scholar
  15. Kerr Y H, Waldteufel P, Wigneron J-P, Martinuzzi J, Font J, Berger M. 2001. Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Transactions on Geoscience and Remote Sensing, 39(8): 1 729–1 735.CrossRefGoogle Scholar
  16. Klemas V. 2011. Remote sensing of sea surface salinity: an overview with case studies. Journal of Coastal Research, 27(5): 830–838.CrossRefGoogle Scholar
  17. Lagerloef G. 2012. Satellite mission monitors ocean surface salinity. EOS, Transactions American Geophysical Union, 93(25): 233–234.CrossRefGoogle Scholar
  18. Latif M. 2001. Tropical Pacific/Atlantic Ocean interactions at multi-decadal time scales. Geophysical Research Letters, 28(3): 539–542.CrossRefGoogle Scholar
  19. Pinori S, Crapolicchio R, Mecklenburg S. 2008. Preparing the ESA-SMOS (soil moisture and ocean salinity) missionoverview of the user data products and data distribution strategy. In: Microwave Radiometry and Remote Sensing of the Environment, 2008. MICRORAD 2008. IEEE, Firenze. p.1–4.CrossRefGoogle Scholar
  20. Reul N, Tenerelli J, Boutin J, Chapron B, Paul F, Brion E, Brion E, Archer O. 2012. Overview of the first SMOS sea surface salinity products. Part I: quality assessment for the second half of 2010. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1 636–1 647.CrossRefGoogle Scholar
  21. Reul N, Tenerelli J, Chapron B, Waldteufel P. 2007. Modeling sun glitter at L-band for sea surface salinity remote sensing with SMOS. IEEE Transactions on Geoscience and Remote Sensing, 45(7): 2 073–2 087.CrossRefGoogle Scholar
  22. Ruf C S, Gross S M, Misra S. 2006. RFIdetection and mitigation for microwave radiometry with an agile digital detector. IEEE Transactions on Geoscience and Remote Sensing, 44(3): 694–706.CrossRefGoogle Scholar
  23. Sabia R, Camps A, Talone M, Vall-Llossera M, Font J. 2010. Determination of the sea surface salinity error budget in the soil moisture and ocean salinity mission. IEEE Transactions on Geoscience and Remote Sensing, 48(4): 1 684–1 693.CrossRefGoogle Scholar
  24. SMOS-BEC Team. 2014. SMOS-BEC ocean and land products description. http://cp34-bec.cmima.csic.es/doc/BECSMOS-0001-PD.pdf.Google Scholar
  25. Tang W Q, Yueh S H, Fore A G, Hayashi A, Lee T, Lagerloef G. 2014. Uncertainty of Aquarius sea surface salinity retrieved under rainy conditions and its implication on the water cycle study. Journal of Geophysical Research: Oceans, 119(8): 4 821–4 839.Google Scholar
  26. Wei E B, Liu S B, Wang Z Z, Tong X L, Dong S, Li B, Liu J Y. 2014. Emissivity measurements of foam-covered water surface at l-band for low water temperatures. Remote Sensing, 6(11): 10 913–10 930.CrossRefGoogle Scholar
  27. Yin X B, Boutin J, Martin N, Spurgeon P, Vergely J L, Gaillard F. 2014. Errors in SMOS Sea Surface Salinity and their dependency on a priori wind speed. Remote Sensing of Environment, 146: 159–171.CrossRefGoogle Scholar
  28. Yin X B, Boutin J, Martin N, Spurgeon P. 2012. Optimization of L-band sea surface emissivity models deduced from SMOS data. IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1 414–1 426.CrossRefGoogle Scholar
  29. Zhang H F, Chen G, Qian C C, Jiang H Y. 2013. Assessment of two SMOS sea surface salinity level 3 products against argo upper salinity measurements. IEEE Geoscience and Remote Sensing Letters, 10: 1 434–1 438.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xiaolin Tong (佟晓林)
    • 1
    • 2
    • 3
  • Zhenzhan Wang (王振占)
    • 2
  • Qingxia Li (李青侠)
    • 1
  1. 1.Department of Electronics and Information EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.Key Laboratory of Microwave Remote Sensing, National Space Science Center/Center for Space Science and Applied ResearchChinese Academy of SciencesBeijingChina
  3. 3.School of Physics and ElectronicsHenan UniversityKaifengChina

Personalised recommendations