Advertisement

Survey of cyanomyovirus abundance in Shantou coastal waters by g20

  • Chuanbiao Li (李传标)
  • Jun Ding (丁俊)
  • Lizhen Zhou (周立镇)
  • Zhao Zhang (张昭)
  • Shengkang Li (李升康)
  • Wenhua Liu (刘文华)
  • Xiaobo Wen (温小波)
Biology
  • 96 Downloads

Abstract

To understand the genetic diversity and population changes in cyanophages in the coastal waters of Shantou, northeast South China Sea, we used the capsid assembly protein gene g20 as a marker of the abundance and phylogeny of natural cyanomyovirus communities. The abundance of total viruses, heterotrophic bacteria, and picophytoplankton in the coastal waters was monitored with flow cytometry. Hydrological parameters (NO 3 , NO 2 , NH3, soluble reactive phosphorus, total dissolved nitrogen, total dissolved phosphorus, dissolved oxygen, chemical oxygen demand, temperature, salinity, and chlorophyll a concentration) and microbial abundance (total viruses, total bacteria, Prochlorococcus, Synechococcus, and eukaryotes) were measured in the upper and lower layers at four sampling sites in the research area. In the direct viral counts, cyanomyoviruses accounted for 1.92% to >10% of the total viral community. A phylogenetic analysis showed that the g20 sequences in the Shantou coastal waters were very diverse, distributed in eight distinct operational taxonomic units, including the newly formed Cluster W. The g20 gene copies inferred from real time PCR assay indicated that cyanomyoviruses were correlated significantly with the heterotrophic bacteria numbers and the nitrate and chlorophyll a concentrations. These results suggest that cyanomyoviruses are ubiquitous and are an abundant component of the virioplankton in Shantou coastal waters.

Keyword

cyanomyovirus g20 Shantou coastal water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergh Ø, Børsheim K Y, Bratbak G, Heldal M. 1989. High abundance of viruses found in aquatic environments. Nature, 340(6233): 467–468.CrossRefGoogle Scholar
  2. Brussaard C P D, Wilhelm S W, Thingstad F, Weinbauer M G, Bratbak G, Heldal M, Kimmance S A, Middelboe M, Nagasaki K, Paul J H, Schroeder D C, Suttle C A, Vaqué D, Wommack K E. 2008. Global-scale processes with a nanoscale drive: the role of marine viruses. ISME. J., 2: 575–578.CrossRefGoogle Scholar
  3. Brussaard C P D. 2006. Optimization of procedures for counting viruses by flow cytometry. Appl. Environ. Microbiol., 70(3): 1 506–1 513.CrossRefGoogle Scholar
  4. Bidle K D, Haramaty L, Barcelos E R J, Falkowski P. 2007. Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi. Proc. Natl. Acad. Sci. USA, 104(14): 6 049–6 054.CrossRefGoogle Scholar
  5. Chen F, Lu J R, Binder B J, Liu Y C, Hodson R E. 2001. Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR gold. Appl. Environ. Microbiol., 67(2): 539–545.CrossRefGoogle Scholar
  6. Chen F, Suttle C A, Short S M. 1996. Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes. Appl. Environ. Microbiol., 62(8): 2 869–2 874.Google Scholar
  7. Choi D H, Hawang C Y, Cho B C. 2003. Comparison of virus- and bacterivory-induced bacterial mortality in the eutrophic Masan Bay, Korea. Aquat. Microb. Ecol., 30: 117–125.CrossRefGoogle Scholar
  8. Danovaro R, Corinaldesi C, Dell’anno A, Fuhrman J A, Middelburg J J, Noble R T, Suttle C A. 2011. Marine viruses and global climate change. FEMS Microbiol. Rev., 35(6): 993–1 034.CrossRefGoogle Scholar
  9. Dinsdale E A, Edwards R A, Hall D, Angly F, Breitbart M, Brulc J M, Furlan M, Desnues C, Haynes M, Li L L, McDaniel L, Moran M A, Nelson K E, Nilsson C, Olson R, Paul J, Brito B R, Ruan Y J, Swan B K, Stevens R, Valentine D L, Thurber R V, Wegley L, White B A, Rohwer F. 2008. Functional metagenomic profiling of nine biomes. Nature, 452(7187): 629–632.CrossRefGoogle Scholar
  10. Dorigo U, Jacquet S, Humbert J F. 2004. Cyanophage diversity, inferred from g20 gene analyses, in the largest natural lake in France, Lake Bourget. Appl. Environ. Microbiol., 70(2): 1 017–1 022.CrossRefGoogle Scholar
  11. Filee J, Tetart F, Suttle C A, Krisch H M. 2005. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc. Natl. Acad. Sci. USA, 102(35): 12 471–12 476.CrossRefGoogle Scholar
  12. Fuller N J, Wilson W H, Joint I R, Mann N H. 1998. Occurrence of a sequence in marine cyanophages similar to that of T4 g 20 and its application to PCR-based detection and quantification techniques. Appl. Environ. Microbiol., 64(6): 2 051–2 060.Google Scholar
  13. Jeffrey S W, Humphrey G F. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz., 167: 191–194.Google Scholar
  14. Jiao N Z, Yang Y H. 2002. Ecological studies on Prochlorococcus in China seas. Chin. Sci. Bull., 47(15): 1 243–1 250.CrossRefGoogle Scholar
  15. Kim J D, Lee C G. 2006. Diversity of heterocystous filamentous cyanobacteria (blue-green algae) from rice paddy fields and their differential susceptibility to ten fungicides used in Korea. J. Microbiol. Biotech., 16(2): 240–246.Google Scholar
  16. Larsen A, Flaten G A F, Sandaa R A, Castberg T, Thyrhaug R, Erga S R, Jacquet S, Bratbak G. 2004. Spring phytoplankton bloom dynamics in Norwegian coastal waters: microbial community succession and diversity. Limnol. Oceano., 49(1): 180–190.CrossRefGoogle Scholar
  17. Lee S, Fuhrman J A. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol., 53(6): 1 298–1 303.Google Scholar
  18. Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4): 402–408.CrossRefGoogle Scholar
  19. Lu J R, Chen F, Hodson R E. 2001. Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl. Environ. Microbiol., 67(7): 3 285–3 290.CrossRefGoogle Scholar
  20. Mann N H. 2005. The third age of phage. Plos Biol., 3(5): e182.CrossRefGoogle Scholar
  21. Marie D, Partensky F, Jacquet S, Vaulot D. 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol., 63(1): 186–193.Google Scholar
  22. Marie D, Brussaard C P D, Thyrhaug R, Bratbak G, Vaulot D. 1999. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl. Environ. Microbiol., 65(1): 45–52.Google Scholar
  23. Marston M F, Sallee J L. 2003. Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode Island’s coastal waters. Appl. Environ. Microbiol., 69(8): 4 639–4 647.CrossRefGoogle Scholar
  24. Matteson A R, Loar S N, Bourbonniere R A, Wilhelm S W. 2011. Molecular enumeration of an ecologically important cyanophage in a Laurentian Great Lake. Appl. Environ. Microbiol., 77(19): 6 772–6 779.CrossRefGoogle Scholar
  25. Matteson A R, Rowe J M, Ponsero A J, Pimentel T M, Boyd P W, Wilhelm S W. 2013. High abundances of cyanomyoviruses in marine ecosystems demonstrate ecological relevance. FEMS Microbiol. Ecol., 84(2): 223–234.CrossRefGoogle Scholar
  26. Murray A G, Jackson G A. 1992. Viral dynamics: a model of the effects of size shape, motion and abundance of single-celled planktonic organisms and other particles. Mar. Ecol. Prog. Ser., 89: 103–116.CrossRefGoogle Scholar
  27. Øvreas L, Bourne D, Sandaa R A, Casamayor E O, Benlloch S, Goddard V, Smerdon G, Heldal M, Thingstad T F. 2003. Response of bacterial and viral communities to nutrient manipulations in seawater mesocosms. Aquat. Microb. Ecol., 31: 109–121.CrossRefGoogle Scholar
  28. Palenik B. 1994. Cyanobacterial community structure as seen from RNA polymerase gene sequence analysis. Appl. Environ. Microbiol., 60(9): 3 212–3 219.Google Scholar
  29. Partensky F, Hess W R, Vaulot D. 1999. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev., 63: 106–127.Google Scholar
  30. Rohwer F, Thurber R V. 2009. Viruses manipulate the marine environment. Nature, 459(7244): 207–212.CrossRefGoogle Scholar
  31. Safferman R S, Cannon R E, Desjardins P R, Gromov B V, Haselkorn R, Sherman L A, Shilo M. 1983. Classification and nomenclature of viruses of cyanobacteria. Intervirology, 19(2): 61–66.CrossRefGoogle Scholar
  32. Sandaa R A, Larsen A. 2006. Seasonal variations in virus-host populations in Norwegian coastal waters: Focusing on the cyanophage community infecting marine Synechococcus spp. Appl. Environ. Microbiol., 72(7): 4 610–4 618.CrossRefGoogle Scholar
  33. Sandaa R A, Clokie M, Mann N H. 2008. Photosynthetic genes in viral populations with a large genomic size range from Norwegian coastal waters. FEMS Microbiol. Ecol., 63(1): 2–11.CrossRefGoogle Scholar
  34. Short C M, Suttle C A. 2005. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl. Environ. Microbiol., 71(1): 480–486.CrossRefGoogle Scholar
  35. Sullivan M B, Waterbury J B, Chisholm S W. 2003. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature, 424(6952): 1 047–1 051.CrossRefGoogle Scholar
  36. State Bureau of Quality and Technical Supervision. 2007. The Specification for Oceanographic Survey-Observations of Chemical Parameters in Sea Water. China Standard Press, Beijing, China. (in Chinese)Google Scholar
  37. Suttle C A. 2005. Viruses in the sea. Nature, 437(7057): 356–361.CrossRefGoogle Scholar
  38. Suttle C A. 2007. Marine viruses-major players in the global ecosystem. Nat. Rev. Microbiol., 5(10): 801–812.CrossRefGoogle Scholar
  39. Suttle C A, Chan A M, Cottrell M T. 1990. Infection of phytoplankton by viruses and reduction of primary productivity. Nature, 347(6292): 467–469.CrossRefGoogle Scholar
  40. Thingstad T F, Heldal M, Bratbak G, Dundas I. 1993. Are viruses important partners in pelagic feed webs?. Trends Ecol. Evol., 8(6): 209–213.CrossRefGoogle Scholar
  41. Thingstad T F, Lignell R. 1997. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol., 13: 19–27.CrossRefGoogle Scholar
  42. Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acid. Res., 25(24): 4 876–4 882.CrossRefGoogle Scholar
  43. Venter J C, Remington K, Heidelberg J F, Halpern A L, Rusch D, Eisen J A, Wu D Y, Paulsen I, Nelson K E, Nelson W, Fouts D E, Levy S, Knap A H, Lomas M W, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y H, Smith H O. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304(5667): 66–74.CrossRefGoogle Scholar
  44. Waldor M K, Mekalanos J J. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science, 272(5270): 1 910–1 914.CrossRefGoogle Scholar
  45. Wang G H, Asakawa S, Kimura M. 2011. Spatial and temporal changes of cyanophage communities in paddy field soils as revealed by the capsid assembly protein gene g20. FEMS Microbiol. Ecol., 76(2): 352–359.CrossRefGoogle Scholar
  46. Wang K, Chen F. 2004. Genetic diversity and population dynamics of cyanophage communities in the Chesapeake Bay. Aquat. Microb. Ecol., 34(2): 105–116.CrossRefGoogle Scholar
  47. Wang M, Liang Y T, Bai X G, Jiang X J, Wang F, Qiao Q. 2010. Distribution of microbial populations and their relationship with environmental parameters in the coastal waters of Qingdao, China. Environ. Microbiol., 12(7): 1 926–1 939.CrossRefGoogle Scholar
  48. Waterbury J B, Watson S W, Valois F W, Franks D G. 1986. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can. Bull. Fish. Aquat. Sci., 214: 71–120.Google Scholar
  49. Weinbauer M G, Rassoulzadegan F. 2004. Are viruses driving microbial diversification and diversity? Environ. Microbiol., 6(1): 1–11.CrossRefGoogle Scholar
  50. Wichels A, Biel S S, Gelderblom H R, Brinkhoff T, Muyzer G, Schütt C. 1998. Bacteriophage diversity in the North Sea. Appl. Environ. Microbiol., 64(11): 4 128–4 133.Google Scholar
  51. Wilhelm S W, Carberry M J, Eldridge M L, Poorvin L, Saxton M A, Doblin M A. 2006. Marine and freshwater cyanophages in a Laurentian Great Lake: evidence from infectivity assays and molecular analyses of g20 genes. Appl. Environ. Microbiol., 72(7): 4 957–4 963.CrossRefGoogle Scholar
  52. Wilhelm S W, Jeffrey W H, Dean A L, Meador J, Pakulski J D, Mitchell D L. 2003. UV radiation induced DNA damage in marine viruses along a latitudinal gradient in the southeastern Pacific Ocean. Aquat. Microb. Ecol., 31(4): 1–8.CrossRefGoogle Scholar
  53. Wilhelm S W, Suttle C A. 1999. Viruses and nutrient cycles in the sea — viruses play critical roles in the structure and function of aquatic food webs. Bioscience, 49(10): 781–788.CrossRefGoogle Scholar
  54. Wilhelm S W, Weinbauer M G, Suttle C A, Jeffrey W H. 1998. The role of sunlight in the removal and repair of viruses in the sea. Limnol. Oceanogr., 43(1): 586–592.CrossRefGoogle Scholar
  55. Wommack K E, Colwell R R. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev., 64(1): 69–114.CrossRefGoogle Scholar
  56. Yan Q, Wang M, Bai X, Sun J, Liang Y, Wang F. 2010. New phylogenetically distinct cyanophages found in the coastal Yellow Sea by Qingdao. Acta. Virologica., 54(4): 255–260.CrossRefGoogle Scholar
  57. Zhong Y, Chen F, Wilhelm S W, Poorvin L, Hodson R E. 2002. Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20. Appl. Environ. Microbiol., 68(4): 1 576–1 584.CrossRefGoogle Scholar
  58. Zwirglmaier K, Heywood J L, Chamberlain K, Woodward E M, Zubkov M V, Scanlan D J. 2007. Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. Environ. Microbiol., 9(5): 1 278–1 290.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Chuanbiao Li (李传标)
    • 1
    • 2
  • Jun Ding (丁俊)
    • 1
    • 2
  • Lizhen Zhou (周立镇)
    • 1
    • 2
  • Zhao Zhang (张昭)
    • 1
    • 2
  • Shengkang Li (李升康)
    • 1
    • 2
  • Wenhua Liu (刘文华)
    • 1
    • 2
  • Xiaobo Wen (温小波)
    • 1
    • 2
  1. 1.Guangdong Provincial Key Laboratory of Marine BiologyShantou UniversityShantouChina
  2. 2.Marine Biology InstituteShantou UniversityShantouChina

Personalised recommendations